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Light verb constructionsarea semi-productre classof multiword expressiorwhich have
notyet beenstudiedcomputationallyin greatdetail. Theseconstructioncombinea restricted
setof light verbs(verbsusedwith a subsetof their full semanticfeatures)with a large set
of complementsthis combinationdetermineshe predicatemeaningof the expression. In
this work we investigatethe (semi-)productiity of light verb constructionsvhich employ a
predicatve noun(a nounthathasan argumentstructure)astheir complement.We show that
the productvity of theseconstructionslependn the semanticclassof the complementWe
developthreenovel computationaimeasure$or quantifyingtheacceptabilityof candidatdight
verb constructions.Most of thesemeasuresneetor exceedthe performanceof aninformed
baseline,andre ect distinct trendsin productvity along semanticclassesand acrosslight
verbs. Good correlationand agreementvith humanjudgmentsof constructionacceptability

areachieved.
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Chapter 1

Intr oduction

1.1 Background

Recenwork in computationalinguisticshasbegunto addresshe problemspresentedy mul-
tiword expressionspr MWESs (Bannardetal., 2003;Sagetal., 2002). MWEs arealargeclass
of constructionslooselyde ned by Sagetal. (2002)as"“idiosyncraticinterpretationshatcross
word boundaries”. MWEs include x edandsemi- xed expressionsuchasby andlarge and
kick the budket, aswell asmoreproductive andsyntactically- exible expressionssuchaslight
verb constructions. An unsohed problemposedby MWESs is whetheror not (andhow) they
shouldbe listed in a computationalexicon. As mary MWESs are syntactically e xible, sim-
ple string-basedtoragemethodsareinappropriate Further fully compositionaktoragetech-
niquesleadto overgeneralizationasmary classe®f MWE areonly semi-productre. Solving
the problemspresentedy MWEsi is “key. .. for the developmentof large-scalelinguistically-
soundnaturallanguageprocessindechnology”(Sagetal., 2002).

Our focusin this thesisis on light verb constructiongLVCs), a largely compositional
andsemi-productre classof multiword expressionfound cross-linguistically(Karimi, 1997,
Miyamoto, 2000;Butt, 2003;Folli etal.,2003). Unlike someclasse®f MWESs suchasverb-

particleconstructiongMcCarthyetal., 2003;Baldwin andVillavicencio,2002;Villavicencio
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andCopestak,2002),LVCs have notyet beenexploredcomputationallyin greatdetail. LVCs
combinea memberof arestrictedsetof “light verbs”with oneof a moreopensetof comple-
ments.Light verbsareverbswhich areemployedwith a subsebf their full semantideatures
(Butt, 2003); Englishlight verbsincludetake, give andmale, amongothers. The sentences

listedin (a—c)areexamplesof LVCs formedusingthesethreelight verbs.
a. Priyatooka walk alongthe beach.
b. Allene gavea smilewhenshesaw us.
c. Randymadea joke to hisfriends.

Mostof themeaningof a(non-idiomatic).VC comedrom thecomplemenof theconstruction.
As shovn below, thecomplemenof thelight verbemployedin (a—c)contributesthemainverb

of the correspondingaraphraséstedin (d—f):

d. Priyawalkedalongthe beach.
e. Allene smiledwhenshesaw us.

f. Randyjokedto hisfriends.

The complementausedin (a-c) (walk, smile andjoke) are all examplesof predicative
nouns nounsthathave anargumentstructure.Light verb constructiongormedwith predica-
tivenoun(PN) complementarecalledLV+PN constructionsandarethespeci c classof LVC
focuseduponin thisresearchTheseconstructiongreof interestecauséheir productvity ap-
peardo be patternedFor example the phrasesake a walk, take a stroll, andtake a run areall
acceptabléVCs,andtheircomplementsll describelifferentmannersf motion. Corversely
the phrasestake a groan *take a smile and*take a wink areall unacceptableonstructions,
andtheir complementsill describemethodf non-\verbalexpression.

As hasbeensuggestedthe lexical storageof LV+PN light verb constructionss an un-

solvedproblem.Storingevery possibleLVC is inef cient andfurtherhasno predictive power,
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asit fails to take advantageof the (semi-)productrity of the expression. However, storing
generatiorrulesfor LVCs basedon the semanticclassof the complemenmay leadto over
generalization.The extent of the semi-productiity this classof LVCs exhibits must rst be
determinedsothatan appropriatdexical storagemethodcanbe determined.Computational
measureso quantify the acceptabilityof a candidatdight verb constructionwould be useful
in the developmentof an LVC lexicon, asthey would allow quick andnuancedudgmentsof

classproductvity andacceptability

1.2 Statementof Purpose

Theaim of thiswork is to examinethe (semi-)productrity of LV+PN light verbconstructions
andto developcomputationaimeasure$or quantifyingtheir acceptability

We hypothesizehat the semi-productrity of LVCs dependsn the semanticclassof its
complement,and test this hypothesisby examining trendsin productvity acrosssemantic
classes.CandidatelVCs are formed by combiningeachmemberof a classwith threecho-
senlight verbs—take, give andmale. Thelexical semanticverb classe®f Levin (1993)are
usedasasourcefor PN groupingsalongwith classesutomaticallyextractedfrom thenominal
andverbalhierarchiesof WordNet2.0 (Fellbaum,1988). We hypothesizéhatthesesemantic
classesvill make nuanced-enougsemantialistinctionsto supportgeneralizatiorof LVC ac-
ceptabilitytrendsat the classlevel, andacrosghelight verbsthemseles.

Four diversecomputationameasurearedevelopedto quantify the acceptabilityof candi-
datelight verb constructionsThesemeasuregarepointwisemutualinformation(PMlI), which
is usedasaninformedbaselineL VC-PMI, aversionof PMI enhancedvith linguistic knowl-
edgeof LVCs; LVC-Praob, a probability formula which measureghe likelihood of a given
predicatve nounandlight verbforming anacceptabléVC; andLVC-Freq,asimplermeasure
which ratescandidateconstructiongdy how frequentlythey areattestedn a corpus. Human

acceptabilitjudgmentsof eachcandidatd.VC aregatheredandusedasthe standarcagainst
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which our computationameasuresreevaluated.
Sincesomeacceptabld.VCs arerarein smallerclassicalcorpora,the World Wide Web
is employed asa corpusin this work. We accessvebinformationthrougha general-purpose

searchengine anddevelopthreedifferenttechniquego Iter thenoisefoundin thisdata.

1.3 Outline of Study

Theremaindeof thiswork is dividedinto ve chapters.

Chapter 2: Related Work introducesexisting linguistic theoryof light verbsandlight verb
constructionsvhich is dravn uponin this thesis,anddescribegprevious computationaivork
on LVCs. As someof the modelsof LVC acceptabilitypresentedn this thesisrely on point-
wise mutualinformation,anexaminationof this statisticalmeasuref collocationis included.
We alsoreview the issuesassociateavith usinggeneral-purposeearchenginesn linguistic

research.

Chapter 3: Computational Models of LVC Acceptability introducesour approactof gener
alizingoversemanticlasse®f complementsandbrie y describeshetwo sourcegromwhich
we extracttheseclassesievin (1993)andWordNet2.0. Our four acceptabilitymeasuresire
presented:the PMI baseline the linguistically informed LVC-PMI measurethe LVC-Prob

probabilityformula,andthe simpleLVC-Freqacceptabilityformula.

Chapter 4: Materials and Methods describesherealizationof themodelspresenteih Chap-
ter 3. We presenthe Levin classeemployedin this work, anddescribeour methodfor gener
ating semanticclassesrom WordNet. Our techniqueof extractinginformationfrom the web
is detailed,and methodsdevelopedto remaove noisefrom this dataspeci ed. The statistical

measuresf associatiorusedto gaugethe performancef our measuresrealsoconsidered.



CHAPTER 1. INTRODUCTION 5

Chapter 5: Experimental Resultsdescribegshe humanacceptabilityjudgmentsusedasthe
standardn our experiments.Scoresof correlationandagreemenbetweentheseandeachof
ourmeasurearepresentedandperformancatbotha ne- andcoarse-grainetvel of accept-
ability is consideredAn analysisof the utility of our noise- Itering techniquesoncludeghis

chapter

Chapter 6: Conclusionssummarizeshecontributionsof thiswork andoutlinesits limitations.

Possibldfuture extensionf thisresearclarealsopresented.



Chapter 2

RelatedWork

2.1 Intr oduction

Therearethreestrandsof researctdravn uponin this work: the linguisticandcomputational
analysisof LVCs, existing statisticalmeasuresf collocation,andpastapproaches usingthe
World Wide Webasacorpus.

The linguistics communityhasenjoyed a relatively long history of interestin multiword
expressionge.g.,Bolinger,1971),andthereis a well-developedbody of researchexamining
LVCs in several languagegKarimi, 1997; Miyamoto, 2000; Butt, 2003). In contrast,in the
computationalinguisticscommunitythe studyof MWEs is only arelatively recenttrend,and
while someMWESs (suchasverb-particleconstructionshave beenstudiedin signi cant detail
(BaldwinandVillavicencio,2002;Bannardetal., 2003;Villavicencio,2003),the studyof light
verbconstructionhasbeen,in comparisonlargely overlooked. Neverthelessthereis a small
body of computationatesearchnto LVCs available,including Saget al. (2002),Grefenstette
andTeufel (1995),andDrasandJohnsor(1996).

In mary casescomputationalvork on MWESs hasusedstatisticalmeasuresf collocation
in orderto measureéhemutualassociatioftbetweerwords. Statisticatechniquesuchaspoint-

wisemutualinformation(ChurchandHanks,1989;Churchetal., 1991)have becomestandard
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in measuringhow well givenelementf an MWE predicteachother Suchmeasuregaretyp-
ically interpretedas providing evidenceof a meaningfullinguistic association.As they rely
uponinformationextractedfrom corpora,statisticalmeasure®f collocationtendto perform
optimally whenalarge bodyof evidenceis available(TerraandClarke, 2003).

Unfortunately somelLVCs, like mary MWES, appearrelatively infrequentlyin classical
corpora. Theweb, with its enormoussize,canbe thoughtof asa corpuswith the potentialto
offer evidenceof evenveryrarelinguisticphenomenaDespitetheinherenissuesf noise,it is
increasinglyrecognizedhattheuniquepropertiegandchallenges)hewebpresentganleadto
approacheandopportunitiesunavailablewith classicalcorpora(Kilgarriff, 2001;Turney and
Littman, 2002;Kilgarriff andGrefenstette2004). Much work hasfocusedon discoveringthe
propertieof webtext, andondesigningbettertechniquegor web-basedhformationextraction
(Florescuetal., 1998;Lin, 2002).

In thenext section Jinguisticandcomputationalinguistic studiesof the propertief light
verbsandlight verbconstructionsreexplored.In thesectionfollowing, statisticameasuresf
capturingcollocationsarestudied,andin the nal section,existing computationahpproaches

to employing thewebasa corpusarereviewed.

2.2 Light Verb Constructions

2.2.1 Light Verbs

In orderto examinelight verb constructionsve must rst considerthe natureof light verbs.
A light verbis a verb (usually a frequentverb with a very generalmeaning)which, when
combinedwith certaincomplements|osessomeof its normal semantics:such usagesare
saidto be semanticallybleached (Butt and Geuder,2001). Light verbsarea cross-linguistic
phenomenorandarefoundin languagesuchasPersianUrdu, andJapaneséarimi, 1997;
Butt, 2003; Miyamoto, 2000). Light verbsin Englishincludegive take, male, do, andhave

amongothers.



CHAPTER 2. RELATED WORK 8

Individual light verbscanhave semanticavhich rangeover a spectrumof meaning.Con-
siderthe following examplesdravn from Butt and Geuder(2001), all of which employ the

verbgiveatvaryingdegreesof “lightness”:

a. | gavethebookto Emily.
b. | gave someadviceto Emily.

c. | gave akissto Emily.

We canseehow the meaningof theverb giverangedrom its “heavy” literal usagen the rst
example(wheresomethingohysicalhasbeenputin therecipients possessionjp moreabstract
in the secondexample (wheresomethingnon-physicalis transferred but not possessed}p
mostabstracin the nal example,wherenothingis transferredandnothingis possessedsa
resultof theaction. A similar spectrunof semantic’lightness”is exhibited by all light verbs,
indicatingthatratherthanbeinga binary distinction,therearedegreesof “heavy” and“light”
usageof light verbs.Thelight verbsfoundin LVCs tendtowardlighter, bleachedsemanticsn
mostcasesbut it canbe unclear—especiallywith thelight verbmale—justhow “light” alight
verbis.!

Butt and Geuder(2001) note that the abore examplesemploying give all sharea vague
sensef emissionwhich mayexplainwhy onecansay| gavetheball a goodthrow, but not*|
gavetheball a goodcatch. However, givecanalsohave apermissve qualityin somelLVCs, as
in Shegavethema lookinto theroom(Butt andGeuder2001). It seem<learthatlight verbs
cancontritutedifferentelementsf their semanticgo differentLVCs.

Kearng2002)aguesthattherearesomecasesvherelight verbsdo notcontritutesemantic

informationto the LVC, citing the speci c exampleof givetherosesa prune In this caseshe

1Considerthe example Thechild madea spill on the carpet(i.e.: somethingwasspilt onto the carpet). The
light verb male seemgo have a hearier usagehere,especiallywhencomparedwith similar constructionsuch
asThechild tooka spill onthe carpet(i.e.: thechild fell over). While it canbe dif cult to comparedegreesof
“lightness”acrosdight verbs,thefactthatsomethingphysicalis “made” in the rst examplesuggestshatmale
is beingusedwith relatively heavier semantics.
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arguesthatthe light verb give, ratherthanaddingsemanticcontent,insteadforcesa speci ¢
meaningstructureto becreated Althoughit is clearthereis asemantidifferencebetweergive
therosesa pruneandprunetherosesit is largely irrelevantto thiswork whetherthedifference
stemsfrom semantianformationcontributedby thelight verb,or ratheris someartifactof the
light verb's presencén theconstructionln eithercasethelight verbandcomplementogether

determinehe predicates semantics.

2.2.2 Light Verb Constructions

Light verb constructionsare thosewhich combinea restrictedsetof light verbswith a large
setof complements$o determinghe meaningof the predicate We restrictour examinationto
light verb constructiongmploying NP complementsexamplesincludethe constructiongake
a walk andgive someadvice Thesearereferredto asLV+NP light verb constructionsSuch
LVCs comprisea heterogenouslassof constructionsbut alsoexhibit a numberof important
commonproperties First, asthe examplesbelow illustrate,mostof the distinctive meaningof
anon-idiomaticLVC comedrom thecomplemento thelight verb,andnotfrom thelight verb

itself .2

a. Everyonebut Jogy tooka ride in the hot-airballoon.
b. Jefrey would oftengivea tour of his houseat the slightestprovocation.
c. Pleasgyivetheshowa try beforeyou changehechannel.

d. Annabelievesshemadea favoumabletradewith herfriend.

Secondly LVCs area semi-productre classof expressions:for example,in Englishone
cantake a walk, take a stroll, take a run, andsoon. LVCs areevenmore productve in other

languagesKhanlari(1973)notesthatin contemporaryersian.VCs have evolvedto replace

2Sincewe areinterestedn productiity, we focuson non-idiomaticLVCs, astheir behaiour is moreregular
andtheir semanticdessidiosyncratic.IdiomaticLVCs generallytendnotto be productie.
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simpleverbs,leaving only a handfulof simpleverbsin use.This (semi-)productrity raiseshe
familiar problemof whetheror not (andhow) to storeLVCs in a computationalexicon (Sag
etal.,2002).

However, LVCs are not a uniform classof constructionscontraryto whatis generally
assumedh existingcomputationaork ontheseconstructiongGrefenstettandTeufel,1995;
DrasandJohnson1996; Saget al., 2002). Rather LVCs containseveral distinct subclasses.
Kearns(2002)andothersdivide the LV+NP classof LVCs we areinterestedn into two main
subclassesseparatinghosein the LV+PN format from the remainderof the class. LV+PN
constructionssuchasthe phrasetake a stroll, aredistinguishedby employing a predicatve
nour? (PN) astheir complement.While this predicatve nounmay super cially seemto be a
nounobjectof thelight verb,in mary waysit is behaing asaverbalelementandsharedoth

nominalandverbalpropertiegWierzbicka,1982;Butt, 2003).

LV+PN Light Verb Constructions

LV+PN constructionshave beenthe subjectof detailedlinguistic examination. Wierzbicka
(1982) performsa comprehensie semanticanalysisof onegroupof LVCs: thosein the have
a V format. Many of the complementsmployed by Wierzbicka (1982) would be labelled
in this work as predicatve nouns. Shecreatesand examines10 differentsubclassesf the
constructiorandbuilds for eachwhatshecalls a “semanticformula” which beginsto account
for boththe nuancesn productiity andthe differencesn acceptabilityof individual LVCs.#
Thesdormulaeoffer somesemantically-basepredictive ability whenconstructinghew LVCs,
but unfortunately asthey arenot rootedin ary formal semanticsystem their computational
applicationis dif cult. Neverthelessthe 10 differentsubclassesf havea V constructions

whichWierzbickaidenti es andjusti es shav thatthecompleity of LVCsis notidiosyncratic,

3The labelling of this complementvariesin the literature, but as its salientpropertyis thatit featuresan
argumentstructure we will referto it hereasa predicativenoun

4Examplesof Wierzbickas subclassesclude “Aimless Objectlesdndividual Activity Which Could Cause
OneTo FeelGood” (which includeshavea walk) and“Tentatve Action Which Could CauseOneTo ComeTo
Know SomethingandWhich Would Not CauseOneTo FeelBad|f It Didn't” (whichincludeshavea try).
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Construction | True Light Verb (TLV) VagueAction Verb (VAV)

Inde nite Det. | Rogave agroanjustnow. Ro gave ademonstratiooday

De nite Det. * Ro gave thegroanjust now. Ro gave thedemonstratiotoday
Passve * A groanwasgivenby Ro. A demonstrationvasgivenby Ro.
WhMovement| * Which groanwasgivenby Ro? | Which demonstrationvasgivenby Ro?

Table2.1: Examplef Light andVagueAction Verbs.

but rather patterned.

Someof thegenerakemantiqropertieghatWierzbickaidenti es applyto thelargerclass
of LV+PN light verb constructionsFor instance WierzbickanotesthathavelLVCs arehighly
colloquial, andthis appliesto otherlight verbsmore generally: one cantake a peebut not
*take a urination. Like thosein the havea V format, membersof the full classof LV+PN
constructiongenerallydenoteeventswhich arebrief (onecantake a walk but cannotusually
?take a walk all day), lessgoal-orientedcomparegive a knodk on the door with knodk on
the door), andrepeatabléone cannottake a bite of a sandwichif oneintendsfor the bite to
consumet entirely) (Wierzbicka,1982).

We adoptthe terminologyof Kearns(2002),who distinguished.V+PN constructiondy
dividing theminto the categoriesof TrueLight Verbs(TLVs) andVagueAction Verbs(VAVS).
TLVs arede ned asrequiring an inde nite complementheadedby a nounin a stemform
identicalto a verb;further, the NP complement®f TLVs cannotundego wh-movement.The
complemenbf a TLV cannotbe modi ed by arelative clauseandcannotbe pronominalized.
In contrast,VAVs allow thesepropertiesanddo not requiretheir complementhave a verbal
stemform. Thelight verbin VAV constructionsadditionallytendsto make a moresigni cant
semanticcontribution thanin TLVs. Examplesof TLV and VAV constructionsareshavn in
Table 2.1, which is basedon Stevensonet al. (2004). TLVs are the speci ¢ focus of this
research.

While the division of LVCs into the two classesf TLVs and VAVs is useful, it is quite
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categyorical, andthereexist constructionsvhich do not t comfortablyin eithercateyory. For
example,an LVC suchas| took the walk that wasrecommendetiasall the propertiesof a
TLV, exceptthatit employs ade nite articleandis modi ed by arelative clause Phrasesuch
asthesesuggesthattheclassi cationof LV+PN light verbconstructionsnto TLVs andVAVs
is notabinarydecision:rather TLVs andVAVs representwo pointsin acontinuumof LVCs.
Evenwith thesecaveats thedistinctionbetweenTLV andVAV constructionsgs aninformative
one,asit distinguishegpropertiesof LVCswhich hadbeforebeenblurred.

It is clearthat LVCs have both compleity andnuance.The linguistic literatureexploring
the constructions well-developed;however, computationaktudiesof LVCs arerare. This is
perhapsiueto thefactthat,like mary MWEs, the magnitudeof LVC usagehasonly relatively
recentlybecomerecognizedn the eld (Jaclendof, 1997). In the next section,we consider

existing computationatesearchnto LVCs.

2.2.3 Computational Work on LVCs

While it is truethat MWESs in generalandLVCs in particulararea recentareaof interestin
the eld of computationalinguistics,therehasbeensomepreviouswork on LVCs. Sagetal.
(2002)consideL.VCsto besyntactically- exible lexicalizedphrasesandareinterestedn stor
ing theseconstructionsn alexicon. Thesuggestions madethatall nounswhich cancombine
with a givenlight verbhave this informationstoredin their lexical entriesvia a semantiaela-
tion. Thus,for thelight verb male, therewould exist a semantiaelation, o ,
whichwouldthenbeassociatewith eachnounmale canlegitimatelycombinewith (Sagetal.,
2002). This approachrequiresa signi cant amountof storageandoffersno predictive power
asit fails to exploit the (semi-)productiity of LVCs. For example,after encounteringgive
a sigh andgive a groan, the systemwould have no preconceptiorasto the validity of give
a laugh Furthermorethis approactreduceghe validity of every LVC to a binary decision:
eithera light verbis valid with a given complementjn which casethe semanticrelationis

stored,or it is invalid, andthe lexical entry s left unaltered.Our own experimentsn rating
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LVCs, describedn Section5.1, show thatthereis a continuumof acceptabilityfor LVCs, and
further, thatthe acceptabilityof a givenconstructiorcanvary from persorno person.

In thiswork we areinterestedn theacceptabilityof light verbconstructionscrossaclosed
setof light verbsanda moreopensetof predicatve nouns but Grefenstett@and Teufel (1995)
take whatis in somewaysthe oppositeapproach.Ratherthantrying to measureénow gooda
predicatve nounis with acandidatdight verb,theproblemof choosingvhich“supportverb”is
bestfor agiven“deverbalnoun”is consideredSupportverbs(SVs)area classof semantically
impoverishedverbsusedfor syntacticsupport: this classincludeslight verbs,but alsomore
idiosyncraticandcollocationallyrestrictedverbssuchassustain(usedin a supportingrole in
the phrasesustaininjury), lodge (lodge a complain), andcommit(commitmurder) (Fillmore
et al., 2002). Deverbalnouns(DNs) are a subclasof predicatve nounswhich are derived
from a correspondingerh For example,the deverbalnounproposalis dervedfrom the verb
propose

As deverbal nounsusedin SV constructionshave agumentstructure,Grefenstetteand
Teufel (1995)determinegpotentialSV constructiondy assuminghatusesof a deverbalnoun
which are similar to the usesof the correspondingerb arelikely to be occurringin a sup-
port verb construction. Similarity of contet is determinedoy occurrencenith commonPP
arguments. Grefenstetteand Teufel (1995) rst parsetheir corpusand extract the top three
prepositionghatfollow the verb correspondingo eachDN. Then,for eachDN, they extract
NPs headedby that DN andfollowed by a PP employing one of thesetop three extracted
prepositions.For eachoccurrenceof oneof theseextracted“NP PP” phrasesn directobject
positionof a verb,theverbis considered potentialsupportverb,andtheseverbsareranked
by frequeng. The mostfrequentverbon thislist is chosenasthe“best” supportverh Plausi-
ble choices(whereplausibility dependn researcheintuition) areachieved seven out of ten

times? andthelight verbsmale andhavearechoserb60% of thetime.

5This estimateof plausibility comesfrom a review of Grefenstetteand Teufel (1995) presentedn Drasand
Johnsor(1996);Grefenstett@andTeufel (1995)do not explicitly make thesgudgements.
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While this approactgatherssomeinterestingresults,it hasseveral aws. The smallclass
of Englishsupportverbsis left open,which allows the procesdo selectbothrejectandmale
(thetwo aretied) asthe bestchoicefor the deverbalnounsuggestion GrefenstettendTeufel
(1995) concedethat the verb rejectis not semanticallyimpoverished. Additionally, frequent
collocationswhich employ a DN astheir headword canskew the choiceof supportverh For
example,the deverbalnounorder was expectedby the authorsto have the supportverb give
choserfor it, but instead,ssueis selected As the news corpusemployed by Grefenstettand
Teufel(1995)includesmary moreinstance®f “restrainingorders”(whicharetypically issued)
thanit doesof “orders” (which aretypically given),andasthe word order andthe collocated
phraserestraining order are undifferentiatedn their extraction processthe “wrong” support
verbis chosenGrefenstetteandTeufel, 1995).

More critically, theideaof therebeinga single“right” supportverbseemsnvalid. To have
a look at somethingandto take a look at the samething have quite similar semanticsthe
choicedependingnoreon local dialectthanarnything else(Wierzbicka,1982;Kearns 2002).
Worse, one can both take a run (arounda eld) and malke a run (while playing sports,or
“for the border”),andherethe choiceof light verb dramaticallychangeshe semanticof the
construction.While the procesof Grefenstettend Teufel (1995) may sometimesletermine
the mostcommonlight verb usedwith a givendeverbalnoun,this doesnot imply that other
lesscommonusesareinvalid. Finally, this processequiresa corpuswhich canbeparsed.This
canbedif cult, thoughnotimpossible whenusingvery large alternatve corporasuchasthe
weh

Drasand Johnson(1996), like Grefenstetteand Teufel (1995) also attemptto determine
whichsupportverbis bestfor agivennominalizationandachieve resultsslightly morepromis-
ing thanthoseof Grefenstett@ndTeufel (1995). They considemoreglobalinformationabout
candidatesupportverbsby including eachcandidates corpusfrequeng in their model: this
senesasa roughapproximationof the frequeng with which the candidateSV is usedin a

supportingcapacity The strongassumptions madethatall verbsgoverningnominalizations
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areactingassupportverbs,andtheformulaemployedis:
(2.1)

where is the mostlikely supportverb for nominalization , and is the numberof
timesverb hasnominalization asacomplement.

This formula captureghe intuition that (productve) light verbsare moreubiquitousthan
verbswhich areunableto actin alight capacity andfavourstheseverbs. Eighteenexample
LVCs selectedrom thelinguistic literature(suchashavea snoozg areusedasa testset,and
the systemis run with the nominalelement(i.e., snoozg asinput. The top two choicesthe
systemgeneratedor a given complementre comparedo the resultthatis expectedfor the
construction A matchwith eitherresultis considered successandthese(relatively relaxed)
criteria generatea match14 of 18 times, for successateof 77%¢ Of all choicesmade,the
light verbsmale andhaveappearasthe rst choice72% of thetime, which, whencompared
with the 50% rate of selectionof theseverbsin Grefenstettand Teufel (1995), suggestshat
moreproductve supportverbsarebeingchoserusingDrasandJohnsors method.However, it
is very dif cult to generalizdrom justthis handfulof testcasesThe sameconcernsegarding
theassumptiorof a single“correct” supportverbthatapplyto Grefenstett@nd Teufel (1995)
alsoapplyhere.

Thecomputationalork onlight verbconstructionshusfartendsto oversimplifythe prob-
lem, blurring classeof light verbstogetherandassuminghat one*“correct” light verbfor a
given complementcan be chosenfrom an openset. More-appropriataneasuresre called
for—measuresvhich canrecognizemultiple light verbsasvalid with a particularcomplement.
Further any suchmeasureshouldbetestedon morethana handfulof examplessothatmean-

ingful conclusioncanbedrawvn.

5We countthethreeoccasionsn which sparselatapreventsthemeasurdrom producingwo candidatesupport
verbs;DrasandJohnsordo not,andmeasureheir own successt 14/15,0r 93%.
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2.3 Statistical Measuresof Collocation

We now examineexisting statisticalmeasuresf collocationandword associationyhich will

bethefoundationof muchof the statistically-basedesearchnto LVCsto follow in thisthesis.

2.3.1 Collocations

Thereexistsalarge bodyof work concerningstatisticalcollocationanalysis:thequanti cation
of how often given words occurwith one another As thesestatisticaltechniquesare often
interpretedas measuringa relationshipbetweenwords, they have beenusedin mary natural
languagdasks,suchasthe automaticcreationof thesauri(Lin, 1998a)andsynorym analysis
andselection(Turney, 2001),amongothers. While thereare mary statisticalmeasuregand
variationsthereof)which canbeappliedto agivenlinguistic problem(TerraandClarke, 2003),
pointwisemutualinformation (PMI) hasbeenstandardlyemployedin situationswhereinone
wishesto measurehe associatiorbetweentwo words (Lin, 1998a,1999; Terraand Clarke,
2003;Turney andLittman, 2003).As ahighmutualassociatiofbetweerwordsis characteristic
of severaltypesof MWEs, includingLVCs (Lin, 1999),we now explorethe propertief PMI

andexaminehow it haspreviously beenadaptedo variouslinguistic tasks.

2.3.2 Pointwise Mutual Information

PMI canbe motivatedby the obsenation of Firth (1957)that*Y ou shallknow a word by the

compaty it keeps. PMI is de nedin ChurchandHanks(1989)as

(2.2)

PMI thuscomparedhe probability of observing and togetherto the proba-
bility of observing and by chancelf and oftendo appeartogether
then will be ; however if they shareno specialrelationship,then

is expectedto be . If usuallyappearonly whenits complement
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word underconsideratiordoesnot, then will be . PMI thusde nes
a continuumof associationAs written above, PMI appliesonly to two words,but it hasbeen
extendedo threewordsor more(Alshawi andCarter,1994).

Onemustbe sureto cateyorize the natureof this associatie relationshipcarefully PMI
measureshe ability of thewordsin questionto predictoneanother:no meaningfullinguistic
relationshigs necessarilymplied (ManningandSchietze 1999).However, if oneis searching
for evidenceof a linguistic associatiorbetweenwords,a key assumptiormadeis thata high
PMI scorere ects suchanassociatior{TerraandClarke, 2003).

As notedby Manningand Schietze(1999),Lin (1998b),PantelandLin (2002)and oth-
ers,mutualinformationis particularlysensitve to low frequeng counts.In suchcasesvhere
evidenceis low, the measurdendsto overestimataarecasedor which it hasobsered some
evidence,and underestimateare casesfor which it hasnot obsered evidence. Becauseof
this, Manning and Schietze(1999) characterizePMI as being a good measureof indepen-
dence(sincePMI scorescloseto zerooften do indicateindependencéetweenthe wordsin
guestion)but a poor measureof dependenceaslow-frequeny words may be ratedinappro-
priately high and pollute the set of scores . Attemptshave beenmadeto correctthis
undesirabléehaiour. Lin (1998b)adjustssomeof the frequeng countsusedin calculating
the PMI measuréby subtractinga constant from his countsof seeingthe wordsin question
together Thisallows PMI to raterareevents(thosewith low frequeng countsyuniformly ,
ratherthanratingtheminconsistentlyBut thisis anunsatisfyingsolution,asit couldintroduce
new ‘rare'eventsinto themeasureMore-complicate@djustmentsf PMI valuesarepresented
by Fontenellestal. (1994)andPantelandLin (2002),in whichdiscountingunctions,designed
to combatthe skew effectsof PMI, areappliedto themeasure.

This idea of skewing (or rather de-slewing) the output of the PMI measures largely
abandoneavhenit is appliedto large corporaaslow frequeng countsbecomealesspressing
issue. Whenthe web is employed as a corpus,the enormoussize of the materialavailable

ensureshatthelik elihoodof having low frequeng countsis signi cantly reduced Techniques
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emplgying avanillaPMI measuren webdatatendto outperformmorecomplicatedneasures
designedor smallerclassicalcorpora(Turney, 2001; Dumaiset al., 2002;Lin, 2002;Keller
andLapata,2003; Baroni and Bernardini,2004). Furthermore Terraand Clarke (2003) test
PMI alongwith several other statisticalword-associatioomeasuresuchas  andthe log-
likelihoodratio (ManningandSchietze 1999),and nd thatontheirtaskof synorymselection,
unmodi ed PMI operatingon web dataoutperformsall other measures.For thesereasons,
researclusingthewebasa corpustendsto focuslessonalteringtheoutputof thePMI measure
itself, andmoreon ensuringthe databeingusedwith the measures accurateandappropriate.

Focusingasit doessolely on the frequenciesf word tokensandignoring ary linguistic
intuition, PMI wasrecognizecearly on asbeing“extremelysuper cial” (ChurchandHanks,
1989). Differentapproachesave beentaken to inform PMI with linguistic knowledge. PMI
hasbeenadaptedo includewordsof contet by Turney (2001), PantelandLin (2002)and
others,which allows someunrelatedsense®f a word to be Itered from the measure.PMI
hasalsobeenalteredsothat,ratherthanemploying datafrom two words, it employs datagath-
eredfrom clustersof relatedwords (Turney andLittman, 2003). In this way, idiosyncracies
intrinsic from usinga singleword's frequeng informationaresmoothedut. Finally, Turney
(2001)exploresalternatve waysof gatheringfrequeng countsin an effort to capturea more
linguistically-appropriatédeaof "co-occurrence'For his taskof synorym similarity, the nu-
meratorof the PMI formula, , IS re-interpretedasthe likelihood of seeing

near . As wordsthatoccurneareachotheraremorelik ely to be describingthe

sameconceptthanwordswhich appearfurther away, this increaseshe accurag of his mea-
sure® All theseapproachesttemptto provide morelinguistic informationto PMI, so thatit
canbetterre ect thelinguistic phenomenoninderconsideration.

Despiteits limitations, PMI hasbeenshavn to be goodat identifying LVCs, evenwhen

"Theoperatornear' ( NEAR ) is de ned by the AltaVistasearchengine which Turney employs, to return
resultswherein and co-occumwithin 10 words.

8In oneexperimentaccuray increasedy 41%to 62%. It is somavhatsurprisingthatthis alterationmakesas
largeadifferenceasit does,giventherelatively smallwindow of 10 wordsthatthe "near' operatomprovides.
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they were not speci cally soughtout. Lin (1999)usesPMI to identify non-compositional
phrasesn text, hypothesizinghat suchphraseswill have a high mutualassociatiorbetween
theircomponentvords. However, this processlsoidenti es mary compositionalLVCs, such
astake a bite, take a turn, and male a splash As Bannardet al. (2003) point out, PMI is
betterthoughtof astappinginto productvity thannon-compositionalityexplainingwhy such
compositionalLVCs wereidenti ed.

As long asthereis sufcient evidenceof rareinstancesPMI is an appropriatemeasure
for capturingthe associatiorbetweenwordsandelementsof phrasesFor a sufciently large
corpuswe turnto theweb,andin the next sectiontheresultsof analyzingthewebasacorpus

areexplored.

2.4 The WebasaCorpus

2.4.1 Intr oduction

Thereis a growing recognitionthat the web is not only a corpus,but one with properties
suited to linguistic research. Keller and Lapata(2003), using the searchenginesGoogle
(www.google.compndAltaVista (www.altavista.com)have shovn notonly high correlations
betweernwebfrequenciesndcorpusfrequencieshut alsocorrelationbetweernwebfrequencies
andplausibility judgementsKilgarriff (2001)hasgonesofar asto claim, “The corpusof the
new millenniumis theweh” Whatmakestheweb uniqueis its size: asmuchas60 terabytes
of text data—aer sixty trillion words—isavailableto be searcheanline?® It is not only one
of the largestcorporaavailable,but alsooneof the easiesto accessasit is freely accessible
and no further away thana searchenginerequest. As Turney (2001), Dumaiset al. (2002),

Lin (2002),KellerandLapata(2003),BaroniandVegnaduzzq2004)andothersdemonstrate,

9This estimatds basedon Googles own estimateof their index sizeat just over 8 billion pagesan estimate
from Lawrenceand Giles (1999) of 7.5 kilobytes of hon-markuptext per pageof web data,and a (generous)
estimatdrom Kilgarriff andGrefenstett¢2004)of  bytesperword.
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simpleweb-basedpproacheso linguistic problemscanoften outperformmore complicated
approacheselying on smaller classicalcorpora.The web promisesnew opportunitiesn cor-
puslinguistics,aslong asthe problemsandlimitationsinherentin the corpusaredealtwith.

In the next section,we explore differenttechnique®f exploiting thewebasa corpus.We
thenlook at the speci ¢ propertiesof web dataacquiredvia general-purposeearchengines,

andexplore previouswork usingsuchwebextractiontechniques.

2.4.2 Exploiting Web Data

Many differentapproachebave beensuggestedor exploiting webdata.Perhapghe simplest
approachis to useexisting general-purpossearchenginessuchasGoogleor AltaVista. Tur-
ney (2001),Villavicencio(2003)andothersemploy suchsearchenginesandthis approachs
adoptedn this thesis.The advantagethis techniqueoffersis thatof makinganenormousor-
pusavailableeffectively “for free', asall of the work of developingandmaintaininganindex
of the web is doneby the searchengineorganization. However, thereare several disadwan-
tagesnherentin employing ageneral-purposmol (achosersearchengine)for avery speci c
task(linguistic research)As Kilgarriff (2004)notes,general-purpossearchenginesare”lin-
guisticallydumb? having no linguistic annotatiorandmakingno distinctionbetweerpartsof
speech.

BaroniandBernardini(2004)seekto work aroundthesedimitationsby employing asearch
engineonly to gatherpagesof interest,which areretrieved, stored,and usedto constructa
smallerprivatecorpusof webdatawith aspeci c linguistic focus. Dependingon how speci ¢
thisfocusis, the corpuscanbethoughtof as“single-use”(BaroniandBernardini,2004). One
stepfurtheris thework of TerraandClarke (2003),who useno searchengineatall, but rather

privately crawl*? the web and usethe terabyteof general-purposeveb datagatheredastheir

10°Crawling' the webis the standardwvay of discoveringweb data. Generally anindex is built by initializing
arecursve algorithmwith a collectionof seedwebpagesThe algorithmthenvisits every link on eachwebpage,
addingary new pagesencounteredo its index, andproceedsn this manneruntil stoppedor until no new pages
arediscovered.
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corpus: building, in effect, a private searchindex. Theserelatedapproachefave several
adwantagesver simpleweb searching.As more manageablsubsetof web dataare stored
locally, accesss quick,andmary propertieof thecorpus(its size,for instanceranbedirectly
measurednsteadof estimated Furthermoresincethe corpuscanbe computationallyiabelled
and parsed,searchedasedon standardinguistic criteria— a word's part of speechtag, for

instance- canalsobe run. Searchesanalsousemore complex and customizednterfaces
thanwhatareavailablethroughcommerciakearchengines.

But theseapproachearenot without aw. While BaroniandBernardini(2004)do work
towardspresentinga general-purposeebextractiontoolkit, aresearcheemploying suchakit
is still splitting hisor herfocusbetweerthelinguistic problemathandandthe maintenancef a
corpusof webdata.The computationatesourcegor storing,maintaining,andsearchindarge
amountsof dataarestill required,but have beenshifted onto the shouldersof the researcher
ratherthanbeinginvisibly handledoy somegeneral-purpossearchengine.Kilgarriff (2003),
ResnikandElkiss(2003)andothershave movedtowardssolvingtheseproblemsby proposing
large coverage publicly accessibldinguistic searchengines:engineswhich are designedor
linguistsby linguists. While theseefforts have resultedn someexciting earlyresults,a stable
andcomputationallyaccessibldinguistic searchenginewith anindex comparabldo thoseof
the large general-purpossearchengineshasnot yet beendeveloped. In their absencewe
focuson usingexisting general-purpossearctenginesandexploretheissuesassociateavith

theiruse.

2.4.3 Exploiting Search Engines

Major general-purpossearctengineqhencefortireferredto as“searchengines’for simplic-
ity) have previously beenusedin the studyof linguistic phenomenan generalTurney, 2001),
andMWEsin particular(Villavicencio,2003).Suchresearcthashadto dealwith thenoisyna-
ture of webdata,especiallywhencomparedo hand-hiilt classicalcorporasuchasthe British

National Corpus(BNC ReferenceGuide, 2000). Typographicalerrors,ungrammaticatext,
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andeven resultsin otherlanguagesanall contribute noisewhich mustbe controlledfor if
accurateesultsareto beachiered. Worse asresearcherareconstrainedy a searchinterface
not designedvith linguisticsin mind, it is oftennon-trivial to Iter outresultsunrelatedo the
speci c typeof linguistic phenomenoin question.Thisleadsto anothersourceof noisein the
data:thatof the “falsehit.” As we will see,Villavicencio(2003)andTurney (2001)bothuse
specially-designedearches anattemptto minimizethis sortof noise.

Villavicencio(2003)usessearchenginesn herexplorationof the class-basetehaiour of
verb-particleconstructions.Brie y, verb-particleconstructiongVPCs)are MWEs that com-
bineawide rangeof verbswith a memberfrom a smallsetof particles,suchasup, on,down,
along etc!! Like LVCs, VPCsaresemi-productie. The semanticof VPCscanrangefrom
beingcloselyrelatedin meaningto the componenterb and/orparticle,to beingcompletely
semanticallydistinct. Examplesof VPCswith variouslevels of compositionalityinclude put
up, look up, look out, andmale out.

Villavicencioautomaticallygeneratesandidaté/PCsby appendingheparticleup to each
of the 3,100verbslistedin Levin (1993),andexaminestrendsof validity acrossclasses.In
orderto determineif a candidateconstructionis valid, shesearches collectionof classical
corpora,which includesVPC dictionariessuchasthe SinclairandMoon (1989)andthe Mc-
CarthyandWalter(1997),alongwith a corpusof VPCsextractedfrom the BNC. If acandidate
constructions notattestedn thesecorporasheattemptdo validateit by searchingdor it onthe
web:if ary resultsarefound,sheassumeshe candidates avalid verb-particleconstruction.

However, a searchfor the phrase“VERB up” canreturnresultsin which the verb and
particlearenot usedin a VPC. Whenan NP follows the phrasé'VERB up”, the construction
could either be a VPC (run up a bill) or a prepositionalverb (run up a hill), and without
linguistic markup,the two casesare dif cult to distinguish. Thereforeinsteadof searching

for the phrase"VERB up”, Villavicencio searchedor the phrase“VERB up for”, andthus

1lypCsarealsoreferredto in linguistic literatureas “phrasalverbs”, “compoundverbs”, and “discontinuous
verbs”,amongotherlabels.
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excludesmary (thoughnot all) instancesf this ambiguouscaset> Whenthe web-\eri ed
VPCsarecombinedwith the existing dictionaries the numberof VPCsincrease®y 21%,for
atotal of abouttwelve thousandrerb-particleconstructionsFurther class-basetiehaiour is
apparentin someclassessuchas11.3(Verbsof Bring andTake), it is foundthatall members
form valid combinationswith the particleup, while in others,suchas39.7 (Advice Verbs),no
valid combinationsarefound. Levin (1993)is suggeste@sa goodstartingpoint for observing
patternsn productvity in verb-particleconstructions.

Thereare however several issueswith this approach.Most critical is the “failure-to- nd
fallagy,” asde ned by Churchetal. (1991):"...whenyou don't have muchevidencefor some-
thing, it is very hardto know whetherit is becausét doesnt happenor becausgou haven't
beenlooking for it in theright way (or in theright place). A VPC thatis notfoundby Villav-
icencio's searchess markedasinvalid, which might not be the case:the VPC might never be
employedin the corpuswith for afterit, or it might simply not appeaiin the subsectiorof the
webthatis indexedby Google.

Additionally, theassumptiothatthevalidity of agivenVPCis abinarydecisionalsoseems
suspectLike LVCs, VPCsseento exhibit degreesof acceptability:someverycommonVPCs
suchas cookup are acceptabléo most, while otherssuchas ?saug up arelessuniversally
acceptedput still apparenbpnline (Villavicencio,2003; Villavicencioand Copestak, 2002).
OnecanreadVillavicencio(2003)asapplyinga thresholdto this continuumof acceptability:
if a VPC appearsn Googles index at leastonce, it is consideredvalid. However, it is not
clearthatthis (someavhatarbitrary)way of looking atthe datais useful,andit is possiblemore
meaningfulthresholdsouldbe determinedandjusti ed.

Turney (2001)alsousesthewebasa corpus,andfor similar reasonstraditionalresources
(in this case WordNet(Fellbaum,1988))werefoundto be lacking. Turney's taskis slightly

different:givenaproblemword (suchaslevied), asetof four alternatvewords

12Not all instancesreremovedbecaus@on-VPCphrasesncorporatingvh-movement suchasWhid hill did
yourun up for your mother? will still bereturnedby thesesearches.
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(suchasimposed believed requestedcorrelated, and,sometimesan exampleglossof the
problemword in a sentencehis systemis to chosethe alternatve word maostsimilar in
meaningto the problemword. The assumptions madethattwo wordsclosein meaningare
morelikely to co-occurfrequentlythantwo wordswith more distantsemantics—i.e.that
will co-occurmoreoftenwith thanwith ary otheralternate A moresophisticate@pproach
to usingthe web is explored: ratherthansearchingo seeif a given candidatds attestedor
not, as Villavicencio (2003) does, he insteadusesPMI to quantify the associationof each
to theproblemword , andchooseshe with the strongestssociation.
Differenttechnique®f searchinghe webareconsideredn orderto gathermoreaccurate
data. The moststraightforvard methodof gatheringthe informationrequiredfor PMI is to
simply determinethe numberof documentsn which a given and co-occur For each
alternateword, Turney extractsfrom AltaVista the numberof documentsn which both the
problemword andthealternatve word areseenusingthe operator (He alsogathers,
asis necessarfor PMI, thenumberof documentén whichthealternatvewordis seeralone’?)
AltaVistais somevhat uniquein supportingan operatoyt* which returnslinks
to documentsvhereinthewords and co-occurwithin 10 words. Turney re nes his initial
approactby employing this operatorinsteadof , and nds accurayg increase$rom 48%
to 62%. In practice,both thesescorestendto rank antoryms as highly assynoryms, so he
extendsthe searchoy addingtheroughquali er *( ( ) “not”)” to his
searchesThis increasesccurag by anotherd%, to 66%. Adding to the searchsomecontext
wordsto the searchextractedfrom the gloss(if available)bringsaccurag to 74%.
Thesedifferenttechniqueof searchingAltaVista are eachaimedat solving the problem

of noisecausedoy falsehits. Constrainedasheis, by the restrictionsof AltaVista—which

13SinceTurney (2001)is interestednly in comparingthe scoresof each to eachother and
never acrosddifferentproblemwords,the numberof timesthe problemword is obsenedis droppedfrom the
PMI equation.

L altaVistahassupportedhis operatoiin the past,but revisionsto its searchenginetechnologyhave, attimes,
removedit. As of thiswriting, the NEAR operatolis onceagainsupported This illustratesa majorconcernwith
relying on athird-partysearchengine:onehasno controloverthe corpusor theway it is accessed.
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provideslittle context for results—Trney mustensurehathis queriesremove asmary of the
unwantedresultsaspossiblet® Eachsuccessie iterationof his searchtechniques tametedat
a certainkind of falsehit, andwith this noiseremoved,accurag increases.

Turney andLittman (2002,2003)continuework in this vein; here,PMI is usedto measure
semanticorientationof a given problemword . Semanticorientationcapturesthe degree
to which a word is thoughtof as being ‘good’ or "bad': excellentand poor are canonical
examplesof wordswith a positive andnegative semantimrientation respectrely (Turney and

Littman, 2002). Two exemplarsetsof wordsarede ned: a group of wordswith a positive

semanticorientation, , anda group of wordswith a negative orientation, 16
The numberof timesa problemword is associatedavith each andwith
each Is gatheredagainusingAltaVista's operator Thesenumbers

arethencombinedo form whatis calledasemantiorientationPMI formula(SO-PMI),which
subtractshePMI of  with negatvewordsfromthePMI of  with positvewords. Thisforms

ameasuref how ‘good' is:

] (2.3)

This formula employs more datathan previous examplesof PMI we have seen,and canbe
seenasan effort to infusePMI with linguistic knowledge:the measureknows' which words
are good' andbad', andusesthis informationto make whatis intendedasa moreinformed
calculationof thesemantiorientationof acandidateln orderto evaluateSO-PMI, Turney and
Littman (2003)simplify the orientationratingsgeneratedo a binary positive/nejative choice,
andachieze 82%agreementvith athree-thousand-ord corpusof semanticallyabelledwords.

An importantideaadwancedn thiswork is thatof collectingwebdataacrossawholeclass

15As retrieving eachdocumenteturnedwith a searchis notjustinfeasible(dueto thelargenumberof requests
necessaryput impossible(AltaVista, like mostsearchengineslimits the numberof returnedinks to documents
to 1000),0oneoftenis limited to the handfulof wordsof context providedwith eachsearchresult.

18The setof positive and negative words are good, nice, excellent positivg fortunatg correct superior, and
bad, nasty poor, negative unfortunate wrong, inferior, respectiely. They are chosenby the authorsfor their
percevedrelative insensitvity to context (Turney andLittman, 2003).
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of relatedwords, ratherthanrelying on oneword for comparison.This extra dataallows ary
idiosyncrasiesssociatewvith aspeci ¢ wordto besmootheaut,andmaycapturanformation
not available otherwise(Turney, 2002). However, it is importantthat the setsof words all
capturethe samesemanticnotion: otherwise,collecting dataacrossthesewords would be
counterproductie }’

Anotheruseful contribution of Turney andLittman (2003)is the examinationof Laplace
smoothingon PMI with differentcorpussizes!® It is foundthaton large corpora,their PMI
measureas notparticularlysensitve to thevalueof thesmoothingfactor Ratherthanproviding
resistancdo noise,smoothingis usedonly to preventdivision by zero. Two conclusionsare
drawvn: rst, thatthebene t from optimizingthe smoothingfactorfor noiseresistances small
for largecorporaandsecondthatthereis lessneedfor smoothingvhenalargecorpusis avail-
able(Turney andLittman, 2003). Theseconclusionsaresigni cant for otherwork employing
PMI andthewebasacorpus.

Theweb, andsearchenginesn particular presenuniquepropertiesandissuesvhenem-
ployedin corpuslinguistics. Extractinginformationwith searchengineds a promisingavenue
of researchandoffersalarge corpusat very little cost,aslong asissuesof noisecanbe dealt
with. Suchissuesof noiseareencounteredh our own computationaexplorationof LVCs, as
the modelswe develop for quantifyingthe acceptabilityof candidatdight verb constructions
all employ webdataacquiredoy meanf asearchengine.In the next chapterwe presenteand

justify thesemodels.

"Turney and Littman (2003) explore using classesof wordswhich have a more context-sensitve semantic
orientation.Their experimentsarererunemploying and setsfeaturingwordswhich aresimilarly
frequent,but moresemanticallyvariable,to thosethathad previously beenemployed. Examplesof thesewords
includeclassicandcon dence(in the positive set)andguilt andlost (in the negative set). Whenusingthesesets,
accurag is over 10%worse.

18pMI is testedwith threecorpora:thefull AltaVistacorpus;alimited AltaVistacorpusaccessedly instructing
thesearchengineto only includepagedrom the .ca(Canadianhamespacegnda 10 million-word corpuscalled
TASA, whichis acollectionof shortdocumentsulled from a wide variety of sourcesuchasnovelsandnews-
papergTurney andLittman, 2003). Thelimited AltaVista corpusis about2% of the size of thefull corpus,and
TASA about0.5%of the sizeof thelimited AltaVistacorpus.



Chapter 3

Computational Models Of LVC

Acceptabllity

In thiswork we investigatehe (semi-)productiity of LVCsin orderto nd ameango quantify
how well particularlight verbsandcandidatecomplementgjo together We considerconstruc-
tionsin whichanLV occurswith apredicatve noun(PN)—thelLV+PN constructionsliscussed
in Section2.2. In particular we focuson the subclasf True Light Verb constructiongSec-
tion 2.2.2),which aredistinguishedamongotherpropertieshby emplgying aninde nite deter
minerwith a PN complementn a stemform identicalto a verh As notedby Kearns(2002),
Wierzbicka(1982),andothers,the restrictionson which complementganoccurwith partic-
ular light verbsin theseconstruction@ppeaito be semanticallypatterned.complementsvith
similar semanticseemto have the sametrendsof co-occurrencacrosdight verbs. We wish
to examinethis hypothesidy comparingthe behaiour of the complementn anLVC across
semanticclasses.

Two methodsof groupingpotentialcomplementsnto semantiaclassesareconsideredAs
the PNsunderconsideratiorhave an agumentstructureandareidenticalin form to a verb,
we employ the lexical semanticverb classesof Levin (1993). However, it may be that se-

manticclassesvhich incorporatenominalinformationare moreappropriateor this task. We

27
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thereforealsogeneralizeacrosssemantiaclassegeneratedisingboththe nominalandverbal
hierarchief WordNet2.0 (Fellbaum,1988). For eachLevin classwe consideywe generate
correspondingetfrom WordNetgrown from arepresentatie seedword from the Levin class.
Four computationameasuresre developedto quantify the acceptabilityof the candidate
LVCs generatediia our semanticclasses:PMI, LVC-PMI, LVC-Prob,and LVC-Freq. We
hypothesizehatcomparison®f LVC acceptabilitybetweerclassesandontologiesandacross
thelight verbsthemseles,will shav distinctpatternsof acceptability Further comparisonsf
thesemeasureso humanjudgmentsof LVC acceptabilitywill indicatewhich approachs best

suitedto ourtask.

3.1 GeneralizationacrossSemanticClasses

3.1.1 Motivation of Approach

The classof LV+PN light verb construction$ is interestingbecausehe productiity of an
LV appeardo be relatedto the semanticclassof the complement. Considerthe following

examples:
a. Scottgave agroan/ gave asigh/ gave alaugh/ gaveacry.
b. ? Scottmadeagroan/ madeasigh/ madealaugh/ madeacry.
c. * Scotttook agroan/ took asigh/ took alaugh/ took acry.

The PNsgroan sigh laugh andcry all describemethodsof non-\verbalexpression.Fur-
thermore,they all combineto form natural-soundind.VCs with the light verb give When
combinedwith theLV male, theconstructiorof LV andPN s lessacceptablebut seemsnore
acceptableéhanthoseformedwith take, which seemcompletelyunnatural. We believe, fol-

lowing Kearng2002)andWierzbicka(1982),thattheway in which LVs combinewith PNsto

1As ourwork focuseson LV+PN constructionsthelabelof “light verbconstruction(“LVC”) will henceforth
beused for simplicity's sale, to referspeci cally to LV+PN constructions.
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form acceptabldéVCsis notfully idiosyncratic but rathersystematicWe proposeemploying
semanticclassef PNsfrom Levin (1993)andWordNetassemanticallysimilar groupsover
whichto compareheacceptabilityof complementsvith a givenlight verh

Our approachs relatedto theideaof substitutabilityin MWESs. Pastwork hasexamined
substitutingpart of an MWE with a semanticallysimilar word in orderto determinethe pro-
ductiity of the expression—highesubstitutabilityindicating higherproductvity (McCarthy
etal., 2003;Lin, 1999). Similarly, in this work we explore the (semi-)productiity of LVCs
by substitutingcomplementscrossa classof semanticallyrelatedPNs. Like Villavicencio
(2003),we examinetrendsacrosssemanticlassesandexpectto nd cleardistinctionsof pro-
ductiity betweerthem.However, theapproachn thisthesisdiffersfrom thatof Villavicencio
(2003) not only in focusingon LVCs, but alsoin its goal of quantifyinghow good a given
candidatas. As theacceptabilityof acandidatd_VC is notabinarydecisionbut insteadspans
a continuumof acceptabilitywe seekto measurehe acceptabilityof eachcandidatausingthe
(continuous)measuresve developin Section3.2.

In additionto examiningtrendsin LVC acceptabilityacrosssemanticclasseswe explore
trendsacrossthe light verbsthemseles,to determinef thereare patternsin how individual
LVs areusedsemi-productrely in LVCs. We focusonthreecommonEnglishlight verbs:take,
give, andmale. We selecttake andgive becausehey have nearlyoppositesemanticsout still
occurin awiderangeof LVCs. Interestinglyit seemghatsometypesof PNscanoccurequally
well with bothof thesel.Vs: onecanbothtake a tour andgivea tour, dependingon one'srole
in theevent. Thelight verbmale is choserfor its differencefrom take andgive asit seemso
favour differenttypesof PNsin light verbconstructionsAdditionally, the“light” and“heavy”
usesof male seenmoredif cult to distinguishthanthoseof take andgive. We expectmaleto
shaw differentgeneralizatiorbehaiour whencomparedvith the othertwo light verbs.

Finally, asit maybe possiblethatclassesxtractedfrom onesourceform aremoreappro-
priatefor usein LVCs thanthoseof anotheywe comparehe patternsof acceptabilitypetween

therelatedsemanticclassesxtractedfrom Levin (1993)andWordNet. The methodin which
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theseclassesareacquireds now described.

3.1.2 SourcesEmployedin Acquiring SemanticClasses

Sincethe PNswe employ have a stemform identical to a verb, the hand-constructegerb

classesf Levin (1993) may be usefulasa semanticgroupingof potentialcomplementgor

LVCs. Examplesof Levin verb classesnclude“Verbsof Mannerof Speaking”(class37.3,
which containsverbssuchasgroanandcry) and“Hit Verbs”(class18.1,includingverbssuch
asbashandwhadk). We hypothesizghattheseclassesnay make detailedenoughsemantic
distinctionsto allow generalizatiorof LVC acceptabilityalongclasslines.

However, PNsare not verbs,and semanticclassegdravn from an ontologyincorporating
nominal information may form more appropriategroupings. To this end, we also emplgy
WordNetasa sourceof semanticclasse®f PNs. In orderto meaningfullycomparethe LVCs
generatedisingWordNetsetsto thosegeneratedisingthe Levin setswe requirethatbothsets
be semanticallysimilar to oneanother We develop a techniquewhich, given a representatie
seedword from Levin (1993),generates setof semanticallyrelatedPNsfrom WordNet: this
processs explainedin more detail in Section4.2. In brief, we examine WordNets “is a”
hyperrym hierarchyof nouns(i.e.,astroll is akind of walk is akind of action) andthe“is one
wayto” hyperrym hierarchyof verbs(i.e., to stroll is oneway to walk is onewayto trave). In
bothhierarchiesye remove thosewordswhich do not appeain boththe nounandverbtrees,
therebyexcluding elementswhich are not guaranteedo be the particulartype of predicatve
nounswe focuson. We extractcoordinateerms—wordswhich have a parentin commonwith
the given seedword—from eachhierarchy andtheseare usedto form setsof semantically

relatedPNscorrespondingo the Levin class.
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3.2 Acceptability Measures

We develop and evaluatefour differentcomputationabpproacheso quantifyingthe accept-
ability of candidatdight verb constructions.Thesemeasuresre pointwisemutualinforma-
tion (PMI), which hasbeenusedto measurdahe productvity of differenttypesof multiword
expressionsn the past(Lin, 1999); LVC-PMI, which canbe seenasan extensionof PMI in-
corporatindinguisticknowledgeof LVCs; LVC-Prob,whichis a probabilityformuladesigned
to measurdiow likely anLVC constructions givenits componentight verbandcomplement;
andLVC-Freq,asimplemeasuravhich exploits anestimateof the noisefoundin thedataand

rankscandidatedy their frequeng of appearance thecorpus.

3.2.1 The PMI Baseline

As noted, we focus on LVCs in which generallyonly the inde nite determinera or an is
employed. TreatingLV+PN constructionssa collocatedphrasewe employ PMI to measure

theassociatiorbetweerthelight verbandits phrasakcomplement;a PN”.? Thisis labelledas

The PMI scoreof a candidatd_VC is interpretedasits acceptabilitymakingthe assump-
tion thatco-occurrencef anLV andPN complemente ects sharedparticipationin anLVC.
If , then“LV a PN” is understoodo be a good LVC; corversely if

, then“LV a PN” is interpretedasbeingan unacceptableonstruction.
Sincewe employ the World Wide Web as a corpus,problemsof sparsedataare muchless
likely to skew the outputof the PMI formula.

This usageof PMI is unchangedrom our pastwork in employing the measuredo quantify
LVC acceptability(Stevensonet al., 2004),andis usedhereasan informedbaseline.While

PMI candetectasigni cant level of cooccurrencéetweeragivenLV and“a PN” complement,

2SincesomePNsbegin with vowels, theinde nite determinemaybeeithera or an, but it is written hereand
elsavherein this chapterasa for simplicity's sale.



CHAPTER 3. COMPUTATIONAL MODELS OF LVC ACCEPTABILITY 32

this doesnot necessarilymply thattheassociatiorbetweerthesetwo wordsis dueto frequent

usagadn light verbconstructions.

3.2.2 ThelLVC-PMI Measure

The LVC-PMI measureemploys both PMI andlinguistic propertiesof LVCs in orderto make
whatis intendedasa moreinformedjudgmentof candidateconstructionacceptability LVC-
PMI is basedon previous computationaresearchnto LVC constructionsandis a modi ed
versionof the DiffAll measurgresentedn Stevensonet al. (2004). The DiffAll measuras
now explained,asit motivatesLVC-PMI.

DiffAll is foundedonthelinguistic hypothesighatgenerallyonly theinde nite determiner
a (or an) is allowed in LV+PN constructiongKearns,2002). Stevensonet al. (2004) theo-
rize that a higher mutual information value should thereforebe found for “LV a PN” than
for “LV [det] PN” constructionswhere[det] is ary de nite determiner A measurds de-
signedwhich incorporatesboth , Which is interpretedas positive evidence
for LVC usage,and , Which is interpretedas negative evidence. While

shouldindicateif “LV a PN” is a good collocation,the differencebetween

thetwo, , shouldindicateif “LV aPN” isagoodLVC.
To capturethis intuition in a singlemeasure, and are
combinedusingalinearapproximatiorof thelines and

. Thesingleline which approximateshe combinedeffect of thesetwo
PMI equationss , from whichthe DiffAll mea-

sureis drawvn:

(3.1)

Like the measuref synorym similarity presentedn Turney andLittman (2003),DiffAll cap-
turesmore information aboutthe linguistic phenomenonn questionthan PMI alone. 1t is

hypothesizedhat DiffAll is abettermeasuremerdf LVC acceptabilitythan
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On developmentdata, Stevensonet al. (2004) nd that contraryto linguistic claims, the
de nite determinettheis notalwaysrarein LV+PN constructionsFor example theinde nite
LVC | took a walk is acceptablebut so too is the de nite | took the walk that was recom-
mendedDiffAll is testedemploying differentsetsof determinersncludingthe, this, that, and
the possessie determinersandit is found that measure®f excludingthe
performbeston developmentdata. The nal measurehereforeemploys demonstratie deter
miners(this, that) aswell aspossessie determinergmy, your, etc.),but doesnotincludethe
de nite determinetthe Ontestdata,DiffAll is foundto performroughlythe sameasPMI on
candidatd_VCs involving the light verb take, somavhatbetterthanPMI for candidatd_VCs
with give andworsethanPMI for candidatd_VCs with male.

Furtherresearclperformedor thisthesissuggestshereasorDiffAll doesnotclearlyout-
performPMI is thatactualLVC usages morenuancedhansuggestedh thelinguistic litera-
tureandaccountedor in the measureThe phenomenoiof de nite determinerdeingusedin
LVCsis not limited to the LV+PN light verb constructionseempossiblewith mostde nite
determinersConsidetthefollowing examplesnvolving thelight verbtake andthepredicatve

nounwalk:
a. | tookawalk into town.
b. I tookthewalk thatwasrecommendeth thebrochure.
c. | tookthatwalk yesterday
d. We decidedo take anothemwalk alongthebeach.
e. Grandatherannouncedhe wasleaving to take hiswalk.

It seemsthat while “LV a PN” light verb constructionslo occur more often thanthose
usingde nite determiners.VCs emplgying thesedeterminersare still acceptableconstruc-
tions. Further corpusevidenceshaws that thesedeterminersare usedfrequentlyenoughin

LVCsto adwerselyaffect the DiffAll measurewhich is predicatecbn suchLVC usagedeing



CHAPTER 3. COMPUTATIONAL MODELS OF LVC ACCEPTABILITY 34

rare. Our testingon developmentdataindicatesthe bestresultsoccurwhen

and are added(ratherthan subtracted)n a two-to-oneratio. This re ects

thelinguisticintuition thatwhile theassociatiorbetweerthelight verbandtheinde nite com-

plementis the mostimportantfactorin a candidatd.VC's acceptabilityinstanceof thelight

verbemployedwith de nite complementslsocapturepositive informationaboutLVC usage.

and arethereforeaddedo de ne our LVC-PMI measure:
- (3.2)

LVC-PMI, unlike DiffAll, hasnoreasorto excludethe andsoafull setof de nite determiners

is used.

3.2.3 TheLVC-Prob Measure

We now describean alternatve approachwhich doesnot employ PMI. LVC-Probis a proba-
bility formulawhich measureghelikelihoodthatagivenLV andPN form anacceptabléVC.
This probability dependson both the light verb and the predicatve noun, and on theseele-
mentsbeingusedin the context of anLVC. LVC-Probis thusde ned asthejoint probability

- , whichwe factoras:
- (3.3)

We will examineeachof thefactorsof our probabilityformulaindividually, andmotivatetheir
estimation.

The rst factor , re ectsthelinguistic obsenationthathigherfrequeny wordsare
morelikely to be usedascomplementsn LVCs thanlessfrequentwords(Wierzbicka,1982).
We estimatethis probability by , where is the numberof wordsin the corpus.
We do not attemptto distinguishnominalfrom verbalusagesf the PN word tokenin these
counts sinceahigherverbusemaycontributeevidenceasto the predicatve natureof thenoun.

The factorcapturegheintuition thatthe probability of a givenLV andPN

combiningto form anacceptableVC dependn how oftenthe PN formsLVCs in general.
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If a PN forms LVCs with mary light verbs,thenit seemsprobablethatit will form anLVC
with a particularlight verb However, if a PN is not oftenemployedin LVCs, thenit is less
likely a particularcombinationof LV and PN will form an acceptabld.VC. The frequeny
with whicha PN formsLVCsis estimatecasthe numberof timeswe obsere the prototypical
LVC pattern‘LV aPN” (or “LV anPN”, for PNsbeginningwith avowel) acrosgpossibleLVs:

, Where is the numberof light verbsin our study (Notethatthisis an

overestimatesincewe cannotdeterminewhich of suchusagesreindeedLVCs.) Therefore:

(3.4)

Sincewe areonly countingusage®f the PN in the contet of aninde nite determinerin the
numeratorwe normalizeover countsof “a PN”.

Finally, the third factor , re ects that differentLVs have varying de-
greesof acceptabilitywhenusedwith a given PN in anLVC. We similarly estimatethis fac-
tor from corpusdatawith countsof the LV andPN in the typical LVC pattern:

. (Note againthatthis is an overestimatesincewe cannotknow with cer
tainty thata givenusagds anLVC.)

Combiningthe estimationof the threefactorsgivesthe full estimationof LVC-Probusing

corpusdata:

(3.5)

where is thenumberof light verbsfor which datais available,and is the numberof words

in thecorpus.

3.2.4 The LVC-FreqMeasure

Our nal measurel VC-Freq,is speci cally designedo employ webdataaccessedia linguis-

tically ndve searchengines.lt assumes vastbut unannotate@orpus,onewhich is costlyto
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accesgeachcorpussearchcantake severalsecondspndfrom which extractingaccuratedata
isdif cult. LVC-Fregrankstheacceptabilityof candidatd.VCsby thefrequeng atwhichthey
arefoundin a corpus. However, rating thesecandidatesy the numberof resultsfoundin a
searcHor theconstructioris problematicasthesesearchesarevariouslyaffectedby noise.As
detailedin Section2.4.3,awebsearcHor take a walk mayreturnpageswith phrasesinrelated
to thecandidateconstruction We thereforeestimatehelevel of noiseaffectingeachcandidate
constructionandremove this noisefrom its searchresults.

Our estimateof noiseis basedon the intuition that LVCs aremorelik ely to be expressed
without internalmodi ers thanwith suchmodi ers, andthatthelikelihoodof seeinganLVC
with  modi ers approachezgeroas increaseskFor example weexpecttheLVC take awalk
is morelikely to be expressedhaninternally modi ed LVCs suchastake a long walk, which
arein turn more probablethanLVCs suchastake a long, relaxingwalk andtake a long but
stimulatingandrelaxingwalk, andsoforth. We assumehereexistsathreshold, , atwhichthe
likelihoodof producinganLVC involving wordsof internalmodi cation is negligible.
At thisthresholdary resultsreturnedoy asearchor acandidatevith  wildcardsmustinclude
only noisy phrasesinrelatedo LVC usage.

To capturetheseinternal modi ers, we emplgy wildcards(“ ) which matchone word.
Thesewildcardsaresupportedy the versionof the Googlesearchengineusedin this work.2
Thus,asearchfor takea walk mayreturndocumentsncluding phrasesuchastake a short
walk alongwith noise,suchastake a tip: walk with me As morewildcardsare addedto a
searchphrase)ongerforms of noisearereturned.We searchfor eachcandidatd_VC at both
thezeroand wildcardlevel (with determinedndevelopmentata),andlabelthesesearches
and respectrely. Evidenceof LVC usag€(if available)is expectedto be found

with thezerowildcardsearchandonly noiseinvolving theLV andPN is expectedo befound

with the wildcardsearchOur estimateof noiseis remoredfrom thezerowildcardsearchvia

3As detailedin AppendixC, pastupdatesto the Googlesearchenginehave at times discontinuedwildcard
support.
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asimplesubtraction:

- (3.6)

Scoresaregenerallypositive,but averyunacceptableonstructiormayreceve anegativescore
if is nearzero. LVC-Freqis obviously a very basicmeasureit is designedo measure
the acceptabilityof LVCs with very few corpussamplesand shouldalsoillustrate whether
thewebis large enoughto supportsuchbasicapproacheso linguistic problems.Note that if
non-noisyaccesdo our corpuswasavailable(i.e., if resultsetscontainedonly LVCs andno
otherconstructions)then would be by de nition equalto zeroandwe would simply
be emplgying the numberof instance®of LVC usage, , to ratethe acceptabilityof each
candidate. Section4.3.2 describeghe determinationof the valueof throughdevelopment

testingandlinguisticintuition.

3.2.5 Summary of Acceptability Measures

Thefour differentcomputationameasureslevelopedfor quantifyingthe acceptabilityof can-
didateLVCs eachtake a slightly differentapproacho the problem.PMI is aninformedbase-
line, LVC-PMI is intendedas an improvementon the baselinewhich incorporatedinguistic
knowledgeof LVCs, LVC-Probis a probability formula which measureshe likelihood of a
givenLV andPNforminganacceptableonstructionandLVC-Freqis asimplemeasuravhich
ratescandidatedy theirfrequeng of usagen corporaandattemptgo estimateéhenoisefound

in corpusmeasurements.



Chapter 4

Materials and Methods

In this chaptemwe describethe realizationof the computationaimodelspresentedn Chapter3
for quantifyingthe acceptabilityof candidatdight verb constructionsalongwith the seman-
tic classeof predicatve nouns(PNs)againstwhich thesemeasuresre tested. We employ
two typesof semanticclassesn this work: a setof selectedclassedrom Levin (1993),and
correspondinglassesautomaticallygeneratedisingWordNet2.0. In the next section,we list
the Levin classesselecteditheseclassesare chosento re ect a rangeof productvity across
light verbs.We thenfocuson our methodof generatingcorrespondinglasse®f semantically
relatedPNsfrom WordNet.We detailatechniquewnhich, givenaseedPN, gathersa setof PNs
which aresemanticallyrelatedto the seed.With this proceduren place,we describea method
for automaticallyselectinga representatie seedword from eachchosenLevin class. These
seedsareusedwith the setgeneratioralgorithmto producethe WordNetsemanticlasseem-
ployedin this work. It is hopedthatthe trendsin LVC productvity of the classesxtracted
from WordNetwill re ect thoseof the classeselectedrom Levin (1993).

The web extractiontechniquesisedto gatherthe datanecessaryor our four measure®f
LVC acceptabilityarethendescribedWe considettheissuesspeci ¢ to usingWorld Wide Web
dataacquiredvia general-purpossearchenginesanddetailthe threetechniquesievelopedto

Iter noise. Eachis aimedat a differenttype of “falsehit” returnedby the searchengine

38
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employed. In the nal section,we considerthe two statisticalmeasuresve employ to assess
the performancenf our computationameasure®f LVC acceptability We employ Spearman
Rank Correlation(SRC), a statisticwhich captureshow oftentwo annotatorgank candidate
constructionsn the samerelative order alongwith WeightedKappa,a measureof agreement
which given a setof cateory labels(i.e., "poor’, ‘fair', and ‘good’) captureshow often two

annotatorassignthe sameabelsto candidateconstructions.

4.1 Selectionof Levin Verb Classes

Levin (1993)is employed as a sourceof lexical semanticverb classes.Threedevelopment
andfour testclassesarechosero re ect arangeof productvity of complementscrosdight
verbs: theseclassesare listed in Table4.1. Membersof theseverb classeswhich are not
form-equvalentto a nounareremoved from considerationSomeclassessuchas51.4.2,are
(accordingo researcheintuition) generallygoodwith take, slightly worsewith give, andpoor
with male. Others suchas43.2,arebetterfor male, but poorwith take. Someclassessuchas
18.1and18.2,allow thedative form with thelight verbgive while otherssuchas43.2,do not.
As our evaluationprocessmploys comparisonsvith humanacceptabilityjjudgmentsandas
thesearecostlyto gather Levin classesvith morethan35 verbs(30 for developmentclasses)
have arandomsubsef their membershiggchosen.As aresult,all testLevin classehave no

morethan35 membersandall developmentLevin classehase no morethan30 members.

4.2 Generationof WordNet Classes

Our goalis to constructa semantiaclassof PNsfrom WordNetwhich roughly corresponds$o
the coarse-grainetheaningof eachclassselectedrom Levin (1993),sothatwe cancompare
patternsof acceptabilityacrosghe correspondinglassesEachLevin classhasautomatically

extractedfrom it a singlerepresentatie PN seedwhich is usedasa startingpoint for our set
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DevelopmentClasses

Levin# | Name Count | ExampleMembers

10.4.1* | Wipe Verbs,Manner | 30 dah dust scruh wipe

17.1 Throw Verbs 30 bash hit, shoot throw

51.3.2* | RunVerbs 30 bolt, dash hike, streak

TestClasses

Levin# | Name Count | ExampleMembers

18.1,2 | Hit andSwatVerbs 35 bang kick, pound slug

30.3 PeerVerbs 18 gaze leer, peek stare

43.2* SoundEmission 35 burr, clap, plop, whistle

51.4.2 | Motion (non-\wehicle) | 10 drive, paddle row, tack

Table4.1: Levin classeshoserfor developmentandtestdata.A *' indicatesarandomsubsebf verbs

wasusedin theclass.

generatioralgorithm. This algorithmemploys the nominalandverbalhierarchiesof WordNet
to collecta classof PNssemanticallyrelatedto the seedprovided.

For easeof explanation,in the next sectionwe assumea methodexists for choosingan
appropriatd®N seedrom a givenLevin class,anddetailhow a setof semanticallyrelatedPNs
canbe extractedfrom WordNet. We thendescribein the sectionfollowing an algorithmfor

selectinganappropriateseed.

4.2.1 Generatinga Setof RelatedWords

Given a predicatve nounseed, , we wish to gathera setof semantically-relateavords
from WordNetfor usein LVCs. First, the nounand verb hierarchiesare examined,andall
the coordinateerms: of aregatherednto two setsrespectrely labelled and

. Non-wverbsare automaticallyremoved from andnon-noungrom

1A coordinatetermof is aword thatsharesatleastoneof the parentsof
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, to help ensurethat only predicatve nounsremainin the sets. The threelight

verbswe employ in thiswork, if found,arealso Itered. Theunionof thesetwo setsis labeled

. Notethatsince s likely polysemous, likely containssiblingsof
foundundermary differentparents.

We measurdhreepropertiesof each which canbe usedto selectPNs
most appropriatefor the semanticclassesve are generating. First, the numberof syllables
of is extractedfrom an electronicrhyming dictionary; if the word is not found in this
lexicon, thesyllablecountis estimatedThis syllablecountcanbeusedto exploit thelinguistic
obsenation thatthat shorter simplerwordsaretypically betterin LVCs (Wierzbicka,1982).
Secondlythenumberof timesthe stemform of the PN is usedasaverbin the British National
Corpug(BNC Referencé&uide,2000)is measuredT hisis labelled , andallows
usto make useof thelinguistic obsenationthatwordswhich aremorefrequentlyemployedin
generalusagearemorelikely to to beemployedin LVCs. A verbin ector is usedto ensure
that any tenseof a verb with a stemform identicalto a PN is includedin
Finally, eachPN hasa WordNetcountassociateavith it, , Which is de ned as

thenumberof times  is foundassociatewvith adifferentsensef theseed .2 Thisis used

to capturethe intuition that a word which is more often associatedvith likely hasmore
in commonwith it thanonewhichis not. Like , is alsouniform
acrossverbtenses.

It was our expectationthat thresholdscould be appliedto theseproperties. By altering
thesethresholdswe could generatesetsof PNswith varying appropriatenestor LVCs. For
example,if only monosyllabiovordswereallowed,but no restrictionswereputon
and , thenwe would expectto generatea setcontainingshort, simplewordswhich
arelikely betterfor LVCs but which arelessrelatedto . Similarly, if no ceiling wereap-

pliedto thesyllablecounts but severalthousandappearances the BNC anda high WordNet

2Word sensesrelistedin WordNet. For example the verbwalk hastensensedisted, including “using one's
feetto advance”(i.e., | walkedinsteadof driving), “make walk” (i.e.,| amwalkingthe dog), and“accompar or
escort”(i.e.,I'll walkyouto your car).
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frequeng wererequired we would expectto generate smallsetincludingonly very common
(but potentially multi-syllable)words closelyrelatedto theseed . While we did nd that
applyingsuchthresholdsaffectedthe setsas expected, would often becametoo
smallto be useful. In orderfor a meaningfulcomparisorto be madewith the Levin classes,
werequirethatthe WordNetsetshave atleast35 membersandtheseheaily Itered setswere
simplytoosmall. Our setgeneratiortechniquecouldbe adaptedo gatheralargercollectionof
words,but we found extendingour searchbeyond coordinatetermsreturnedPNswhich were

intuitively muchlessrelatedto theseed.In the nal experimenthno syllableceilingis applied,

andPNsmustappealin the BNC atleast fty timesto beeligible for . Thereare
no restrictionson , aswe found capturednuchof the sameinformation.
With thesethresholdsapplied,the remainingmembershipof and
is megedinto the set , Which is usedasour classof relatedwordsgatheredrom
WordNet.

In all cases, is muchlargerthan , evenwithoutthresholdceilings

applied. This is becauseNordNet's verb hierarchyis wider and shallover thanits noun hi-
erarchy(ResnikandDiab, 2000),implying a comparatiely closerassociatiorbetweenverbs.
With thepredicatve nounhopasaseedpnly six otherwordsareselectedy our processn the
nounhierarchy:bounceleap rave spring, bound andsquash In contrastninety-eightverbs
areavailablefrom theverbhierarchyincludingwordssuchasrun, ip, roll, jump, sail, waver,
andsoon.

With atechniquan placefor generatinglasse®f semanticallyrelated®Nsfrom WordNet,
we now explorethe problemof choosinga representatie seedword from eachchosenLevin

class.

4.2.2 Choosinga Representatve SeedWord

We wish to selecta representatie seedword from eachsemanticclasschosenfrom Levin

(1993): a singlePN which bestcapturegherelevantsemanticof the Levin classwith respect
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to LVC formation. In orderto determinewhich membersf a givenLevin classaremostrep-

resentatie, we measuren eachclassthe generaltrendof acceptabilityacrossour threelight

verbs—take, male, and give—by examiningthe patternsin humanacceptabilityjudgments.
EachcandidateLVC generatedy combininga memberof a classwith our light verbshasa

humanacceptabilityrating associatedvith it. Theseratingsrangefrom 1-5 (for the develop-
mentLevin classespr 1-4 (for all otherclassesaswe foundthattherangeof 1-5wasgreater
thanseemedhatural).A ratingof 1 meanghe LVC seemsinnaturato thehumanraterswhile

aratingof 4 or 5 meanghe LVC seemsompletelyacceptablePartial ratings,suchas2.5,are
permitted.Theseratingsandthe methodwith which they aregatheredareexplainedin further
detailin Section5.1.

An approachis developedwhich allows eachlight verb with eachclassto have a label of
either poor’, “fair', or ‘good' appliedto it. Theselabelscapturethe productvity of thelight
verbin LVCs with memberof a givenclass.Predicatve nounswhich we assumee ect these
labelledtrendsto the highestdegreepossibleare automaticallyselectedrom eachclass,and

usedastheseedwordsnecessaryor the setgeneratioralgorithmpreviously described.

The SeedSelectionAlgorithm

For eachLevin classandeachLV, thehumanacceptabilityratingsareputinto buckets:a "poor’
bucket containsratingsfrom 1-2, a “fair' bucket containsratingsfrom 2-3, anda "good'
bucket containsratingsof 3 andabove 3 We determinethe percentagef ratingseachbucket
containsandassigned labelto the LV for thatclass.If the "poor' bucket containsmorethan
80% of the ratings,thenthe LV in questionis labelled poor’ for LVCs in thatclass. If the
“poor’ bucket containdessthan50%of theratings,thenthelLV is labelled good' for theclass.
Anythingbetweerb0%and80%causeshelight verbto belabelled fair'. Thelabelsthatwere

generatedor eachclassaresummarizedn Table4.2. The obviouslimitation of this approach

3We found thatthe 1-5rating scalewas morediscriminatingtowardshigh-endvalueswhencomparedo the
1-4 scale. Therefore the bucket thresholdsare appliedequallyto all humanjudgmentsregardlesof the scale
employed.
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DevelopmentClasses

AcceptabilityLabel

Levin# | ClassDescription take give male | SeedWordSelected

10.4.1* | Wipe Verbs,Manner | poor good poor | ush

17.1 Throw Verbs fair good fair ick

51.3.2* | RunVerbs good fair poor | hop

TestClasses

AcceptabilityLabel

Levin# | ClassDescription take give male | SeedWord Selected

18.1,2 | Hit andSwatVerbs fair good fair knodk

30.3 PeerVerbs fair  fair  poor | chedk

43.2* SoundEmission poor good fair ring

51.4.2 | Motion (non-\wehicle) | good fair  poor | sail

Table4.2: Trendsidenti ed for eachlight verbandclass.A **' indicatesarandomsubsebf verbsfrom

thatclasswereused.

is thattherelative frequeng of “poor' LVCs (which make up alargeproportionof themember
shipin everyLevin class)canaffectwhichlabelanLV receves.More complex measuresvere
explored,including thosewhich considerednly the valuesof the “fair' and ‘good' buckets,
but thesemeasuregshangedhe labelsappliedto LVs in only oneor two instancesandwere
consideredver tting.

We thensearcHor predicatve nounswhich, for eachof thethreelLVs, re ect thesdabelled
trends.If agivenLV is rated poor' for a class,we look for membersvhich, whencombined
with thelight verbunderconsiderationform aconstructiorwith ahumanratingof 1. If theLV
is rated fair', PNswhich have the LVC ratedin therangeof 2—-2.5 arechosenandif theLV
is rated good', PNsrated3.5or higherareselectedldeally, asetof PNsre ecting thegeneral

trendof the classwould be foundby this algorithm,andwould form a setof “perfect t” PNs.
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However, in severalof theclassesno PN perfectly tted theoveralltrendof theclass.In these
caseswe relax our searchconstraintsand selectPNswhich are,for eachlight verb, within
onepointof tting our criteria. Thisformsasetof “near t” PNs.

For eachclassthesetof perfectt PNshasacandidateseedselectedrom it atrandom.If
thiscandidategeneratea setof atleast35elementsrom WordNet,it is choserastheseedand
35 memberdrom its setarerandomlychosernasthe WordNetsetfor the class.If the perfect

t setis empty or if noneof theperfectt PNsgenerate classwith atleast35 elementsthen
theclose t setis usedin the samemanner In only oneclass,30.3,did noneof the PNsin
eitherthe perfector near t setsgeneratea collectionof atleast35 elements.In this casethe
remaining‘poor t” PNswereconsideredTherearefour PNsin 30.3which generate setof a
sufcient size,but only one,ched, distinguishestself by beingwithin our neart constraints
for two of thethreeLVs. This PN s thereforechoserasthe seedword for this class.Theseed
wordsselectedor eachclassarelistedin Table4.2.

Usingtheabove seedselectiontechniquea singlerepresentatie PN is selectedrom each
Levin classemployedin thiswork. ThesePNsareusedasseedsn the WordNetsetgeneration

techniquedescribedn Section4.2.1to form classe®f semanticallyrelatedPNs.

4.3 Extracting Data from the Web

In this sectionwe explorehow informationis gatheredrom thewebaboutthecandidatd-VCs
formedby combiningthelight verbstake, give, andmale with the membersf thesesemantic
classesalongwith thoseclassesselectedrom Levin (1993). This datais employed by the

computationaimeasurepresentedn Chapter3 to assessheacceptabilityof candidatd VCs.

4.3.1 TheWebasa Corpus

The subsectiorof thewebindexedby Googleis usedasa corpus,andGoogles public search

interfaceis usedo accesshis corpus.Therearesereralissuewith employing general-purpose
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searchenginessuchas Googlefor linguistic researchand theseissuesmustbe considered
by ary extractionprocedurdf accuratedatais desired. Critically, punctuationis ignoredin
searchrequestswhich meanghatsearclresultscancrossphraseor sentencéoundaries. For
example,a web pagewith thetext It wastoo mud to take. A cry escapedhis lips. may be
returnedasa searchresultfor the exactphraséetake acry”.

Additionally, Google,like mostgeneral-purpossearchenginesJimits the numberof in-
stancegeturned. No morethana thousandesultscanbe examinedfor eachsearchphrase:
anunfortunatdimitation, asit implies searchesvhich returnlessthana thousandesultscan
be examinedin full, while thosethatdo not canonly be partially examinedto varying propor
tions. Sincethis sampleis not random,statisticalpredictionfrom it is dif cult. However, as
detailedin Section3.2.4,Googleoffersthe adwvantageof supportinga wildcard“ " operatoy
which matchedor oneword. A searcHor takea walkwouldreturnlinks to pagescontaining
the LVCs take a long walk, take a shortwalk, alongwith links to pagescontainingnon-LVC
noisesuchastake a look; walk over. Similarly, onecould searchfor takea  walk, which
would returnresultscontainingLVCs suchastake a long, tiring walk, alongwith noise: Take
a bite! Then,walk over. Furtherissuesspeci ¢ to usingGoogledataasa corpusareexplored
in AppendixC. With thesepropertiesof the corpusin mind, we considerin the next section

how informationextractionis accomplished.

4.3.2 Collecting Data

Eachsearchrequesis madevia an exact-phrasesearch.The numberof resultsreturnedwith
eachsearchwhich we treatasthefrequeng countof the searchegbattern)is storedin alocal
databasegswell asarny context wordsincludedwith the rst thousandnstancesNotethatthis
frequeny countis surelyan underestimateasan LVC may occurmorethanoncein a single

webpage;however, examiningeachdocumento counttheactualoccurrencesf the candidate

4As far aswe are aware, all general-purpossearchengineswith a comparablysizedindex suffer from the
samdimitation.
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is infeasible,giventhe numberof resultsthat could be returnedandthe limit on the number
of instanceseturned.The sizeof the corpus,n, is estimatedat 5.6 billion, the numberof hits
returnedn asearchfor “the” This, too, is surelyanunderestimate.

We now explore the datarequiredfor eachcomputationaimeasureof LVC acceptability
As eachrequestsentto a searchenginecantake several secondgo complete the numberof
searchesequiredcanaffect therelative merit of a measure We thereforeincludethe average

numberof searchrequestsequiredby eachmeasure.

Pointwise Mutual Information (PMI)

PMI is de ned as and measureshe associatiorbetweena given light verb
and“a PN” complement. Several countsare requiredby PMI for eachcandidateLVC: the
frequeny of “LV a PN” (e.g.,take a walk), the frequeng of the light verb (take), andthe
frequeny of thecomplementa walk). Datafrom searche$or the candidatevith nowildcards
(e.g.,take awalk) andwith onewildcard(e.g.,takea* walk) aresummedogetherUsingthese
wildcardsallows usto captureadjectval useof a candidatd.VC, suchastake a long walk, at
the expenseof allowing in more noise. Developmenttestingindicatesthat while including
datawith onewildcardimprovesthe performancef PMI, emplgying datawith morethanone
wildcard actsto decreaseerformanceasthe noisefoundin suchsearchesverwhelmsary
LVC usagaletected.

In orderto achieve broadercoverageandto minimize ary skew from a particulartenseof
thelight verb, we searchacrosshreetensef the light verh This processs alsoperformed
with the LVC-PMI andLVC-ProbmeasuresAny searchinvolving anLV is performedhrice,
eachemploying one of threetenses:the baseform (give), the present(giveg, andthe simple
past(gave. Searchingwith additionaltensedss possible,but aseachnew tenseaddsto the
numberof searchesequiredfor the measureandaseachsearchrequesicantake secondgo
complete the threetensesve considerarefelt to be sufcient to achiese a broadercoverage

while not unduly increasingthe numberof searchrequestgequired. All countsof the light
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Determiner Searchstrings

Inde nite take/tales/tooka walk
De nite take/tales/tookthewalk
Demonstratie | take/tales/tookthis/.../whi& walk

Possesse take/tales/tookmy/.../theirwalk

Table4.3: Searchesiecessaryor the LVC-PMI measureemplo/ed with the light verb take andverb

walk, with nowildcards.

verbsandthe LVCs arecollapsedacrosshethreetenses.

Therefore eachcandidatd VC involvesatotal of eightsearcheperwildcard: onefor
threefor the candidateLVC, threefor the LV, andonefor the complement.However, asthe
resultsfor eachsearchare cachedthe countsfor andfor eachLV arestoredafterthe rst
search.Thusit takesanaverageof four searcheso calculatePMI for eachcandidatd.VC. We

employ theNSPpackaggBanerjeeandPedersen?003)to calculatePMI.

LVC-PMI

LVC-PMl is aversionof PMI thatincorporatesinguisticknowledgeof LVCs, andis de ned as
. Searchesimilarto thosespeci edabove for PMI's
“LV aPN” arealsoperformedfor eachpossible‘’LV [det] PN” constructionasexempli ed in
Table4.3. Thisincludessearche$or boththe LVC (take [det] walk) andthecomplemenalone
([det] walk) usingthefollowing determinersthe, this, that, which, whose what, ead, every,
one no, any, my, our, your, his, her, its, andtheir. Eachcandidatd.VC requiresthe average
four searcheseededor PMI, multiplied by the nineteerdeterminersfor atotal of seventy-six
searcheper predicatve noun. As with PMI, LVC-PMI performsbestwhensearchesrerun

with bothzeroandonewildcard(s),andthe countscombined.



CHAPTER 4. MATERIALS AND METHODS 49

LVC-Prob
LVC-Probis de ned as . The factoris esti-
matedby . Thenumberof resultsfoundin a searchor theword theis again

usedasourestimatgor ; thereforethisfactorrequireson averageonly the onesearctfor the
PN. We estimate by

, Which requireson averageten searchesonefor eachof thethreetensesonsid-
eredfor eachof the threelight verbs,plusthe“a PN” search.Finally, the
factoris estimatedy , Which requiresno additionalrequestsas
thesearche$or the candidatd.VC andthe“a PN” complemenarealreadycached Summing
thesecountstogethemivesthetotal of anaverageof elevensearchepercandidatd.VC. Like
bothPMI andLVC-PMI, bestperformances foundwith datagatheredisingbothzeroandone

wildcard(s).

LVC-Freq

LVC-Freqis de ned asthe subtraction . The numberof resultsfoundin a
searchwith wildcardsis usedasan estimateof noiseaffecting the candidate_.VC, andthis
noiseis subtractedrom the numberof resultsfound in a searchwith no wildcards,where
we expectto nd evidenceof avalid construction.Developmentresultsindicatethatthe pat-
ternin noiseacrossvaluesof canvary, andthis affectsthe accurag of ratingsassignedo
candidatd_VCs. Taking the averageof the frequeng countsbetweensix andten wildcards,
inclusive,bothsmoothsout uctuationsvisible atindividualwildcardlevels,andgivesthebest
agreementvith developmentata.More thantenwildcardsblurstherelationshipbetween.V
andcomplementandmovesmoretowardsmeasuringhe generalevel of noisein the corpus,
ratherthanthespeci c level of noiseaffectingtheLV andPN complement.

The LVC-Freqmeasuras slightly optimizedby choosingthe mostfrequenttenseof the
zerowildcard candidatd_VC: on developmentdata,this led to betteragreementhansimply

meiging countsacrossensef thelight verb, aswe do with the othermeasuresTherefore,
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Measurement AverageSearche®erNon-Dative Candidatd.VC

PMI 4 (numberof wildcards+ 1)
LVC-PMI 76 (numberof wildcards+ 1)
LVC-Prob 11 (numberof wildcards+ 1)

LVC-Freq 8

Table4.4: Theaveragenumberof searchesiecessarfor anon-datve candidatd.VC.

LVC-Fregrequireseightsearchesthreefor determiningthe mostfrequentLV tensewith zero
wildcards,and ve for the candidateLVC searchwith six throughtenwildcards. The differ-
encesn thenumberof searchesequiredfor a candidatd-VC betweerour four computational

measuresareillustratedin Table4.4.

Capturing the Dative Form

Of thethreelight verbswe searcHor, only LVCs involving give canappeain the dative form
(i.e. “give indirectobject aPN”). However, capturingLVCs in this form is important,as
previous researchStevensonet al., 2004) indicatesthat while mary PNscanappeailin both
non-datve and dative LVCs, thereare somewhich canonly appearin the dative form. For
example,one cangive the door a knok and give somethinga try, but while onecangive a
knodk onthedoor, onecannot*give a try to something

In orderto capturedative LVCsin oursearchesye exploredusingwildcards.Searchetke
give akissandgive a kisspromisedo capturephrasesikegiveMomakissandgiveBailey
a big kiss but we found thatthesesearchtechniquesntroducedan overwhelmingamountof
noiseinto the measurementWe insteadperformindividual searche®n a setof pronouns,
which,while requiringmary moresearchrequestsieturnresultsetsivhicharesigni cantly less

noisy. A set is de ned, containing fty-six commonpronouns. For eachpredicatve

5The full setof pronounsis all, anothet any, anybody anyone anything both, ead, either, everybody
everyoneeverything few, her, hers, herself, him, himself, his, it, itself, many me mine myself neither, nobody
none nothing one others, ours, ourselves several, some somebodysomeongsomethingthat, their, theirs,
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noun  andforeach , asearchor givePRO a PN is performedalongwith
relatedsearchesit eachwildcardlevel. While thesesearcheslo excludeary LVCs employing
a properor commonnoun,they still cover a large spaceof LVC usage:phrasesuchasgive
her a kiss (with zerowildcards)and give me a big kiss (with onewildcard) are detectedby
thesesearches.This follows Villavicencio (2003)in designingsearchesvhich, ratherthan
consideringalargecollectionof very noisydata,insteadargetasmallercollectionof “cleaner”
information. Suchsearchesllow usto capturea large amountof dataexhibiting the dative
form while still keepingarelatively high signal/noiseatio.

LVCs that canappearin the dative form are rst searchedor with the usualnon-datve
searchprocess,and then information speci ¢ to the dative form is gathered. As thereare
fty-six pronoungo searchfor, the averagenumberof searchesequiredfor candidatd_VCs
involving give (which mayappeain thedatveform)is fty-six timesthoserequiredfor LVCs
involving the LVs take andmale. Searches$or the dative form arerun for eachmeasuresave
LVC-Freq,asit is designedo explore rating LVCs usingvery little data. It is expectedthat
the comparisonof the performanceof the simpler LVC-Freqto thoseof the more informed
measuresnay prove interesting.

Finally, a very small smoothingfactor of is addedto all countsemployed by our
measures.lt is used,asin Turney and Littman (2003), simply to prevent division by zero:

developmentestingindicatest hasvery little effectonresults.

4.3.3 Removing Noise

While thewebextractiontechniquegmployedby our computationameasurearedesignedo
esch& unwantedinformation, constraintsmposedby the corpusdictatethat resultsetswill
likely still containsigni cant elementof noise.We now describehetechniqueslievelopedfor
removing suchnoisefrom our searchenginewebdata.

Our noise- Itering methodsare constrainedy whatinformationis madeavailable by the

them themselveghesethey, this, us what, which, who, whom whoseyou, yours, yourself, andyourselves
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searchengine. Each Google exact phrasesearchfor a phrase is modeledas a function,

, which returnsthe numberof resultsfoundfor , , anda setof
results, . Each representsa phraseresult returnedby the search
engine,andhasassociateavith it anorderedarrayof context words, . This context

generallyspansarangebeginning with afew wordsbefore andendingafew wordsafter |,
including itself. By examining , We attemptto identify which resultsare noise,
anddesigntechniquedo identify andremove thesenstancegrom
Therearetwo typesof noisefoundin our data. The rst is noiseinherentto the corpus,
including typographicerrorsandungrammaticatext. This noiseis not targetedby our lter -
ing methodsalthoughit may be ltered incidentally The seconds “falsehit” noise: results
returnedwhich areunrelatedto the target of our searchrequests.We explore threedifferent
techniquedor removing this noisefrom the web data. PunctuatiorFiltering is the rst tech-
niquedescribedwhich removesresultsthatareobviously non-LVC usesof the searchphrase
from . A techniquenamedPhraseFiltering is thenconsideredyhich canremove
phraseaunrelatedto LVC usage suchasgive him a strip of paper, from give hima
strip . Finally, the similar techniqueof Multiw ord ExpressiofMWE) Filtering is described,
which canremove non-LVC multiword expressionsuchasgivea slideshowfrom give

aslide.

Punctuation Filtering

Given a setof resultsandtheir context, PunctuatiorFiltering extractsa Itered setin which
all resultsinvolving internal punctuatiorareremoved. Each is examined,and
ary with phrase-endingunctuationthis includesperiods,commasguestiormarks,colons,
braclets,andsoforth) betweerthewordsof isremovedfrom theset. Thisis anef cient tech-
nique,asnoisyresultsareremovedwithoutincurringthe costof additionalsearctrequestsAs
anexample phrasesik e Take a showeyshave and begin your dayappeaitin theone-wildcard

takea shave: with this Itering, all suchphrasesareremoved. Evenwith searches
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withoutwildcards,thereareoftenresultsthatcrosssentencédoundariesphrasesuchastake?
A stroll andgive, (a smile Punctuatiorfiltering removesthis noiseaswell. Effectively, it acts
asalinguistically avarefront endto Google removing its undesiredehaiour of returningre-
sultsinvolving punctuatiorfor exactphraseandpunctuatiorfreesearchrequestsThis Itering

wasappliedto every Googlesearchperformedwith the exceptionof thosefor the LVC-Freq
measureasLVC-Fregis basedon capturingtrendsin noise, Itering out suchnoisewould be

counterproductie.

PhraseFiltering

In examining developmentresultswhich disagreedvith humanratings,we found mary can-
didateLVCs hadbeenratedquite highly by computationaimeasuredecausef their usein
phrases.As an example,the LVC give a strip, which had beenratedpoorly by our human
judges,hadachieved high computationarankingsdueto givea strip returningmary
resultsinvolving stripsof landandpaper In fact,collocatedphrasesuchasgivea strip of pa-
per (to John)andgiveher a strip of land formedthe majority of theresultset. Phrasd-iltering
is designedo remove thesephrases.

We employ PMI, whichhasbeenshovn to work well atidentifying signi cant collocations,
givenalargecorpus.If aphrasesuchasstrip of paperis indicatedoy PMI to occursigni cantly
moreoftenthanchanceallows, we assumehisis anexampleof the non-LVC phraseusageof
the PN, andremove the constructiorfrom resultset. To accomplistthis, the top twenty most
frequentwords occurringafter the “LVC+of” constructionare consideredas candidategor

Itering, andtheinformationnecessaryo apply PMI to thesewordsis gathered.We justify
thechoiceof examiningonly thetop twentywordsby developmentesults which suggesthat
oftenonly afew wordsfollow the LVC with signi cant regularity, andby linguistic intuition,
aswe expecttherewill not be very mary suchcollocatedphrases.By consideringthe top
twenty words,we have awindow expectedto be large enoughto testand Iter all signi cant

collocationswhile notrequiringthataverylarge numberof additionalsearchebe performed.
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However, we cannotsimply examineeach , nd which areimmediately
followedby theword of, andrankthewordsfollowing of by frequeng. As we arelimited by
thethousand-instanaeeiling appliedto searchresults theremaynot besufcient examplesof
LVC usagdollowedby of in theresultsfor a givencandidatego form arepresentatie sample.
In orderto gathermoreaccuratedata,we run a searchfor the candidatdollowed by theword
of: i.e.,takeastrip of. Thetoptwentywordsfollowing this constructiorareconsideredThese
wordsareaddedto a set, , andfor each , we
gatherthe informationnecessaryor PMI. Thus,we recordthe frequeng of “PN of ” (i.e.,
strip of papel), the frequeng of PN (i.e., strip), andthe frequeng of “of ” (i.e., of papey.
We calculate “of w” , andif it is sufciently large, we mark that constructionas
noise. Developmenttestingindicatedthat a PMI value of 1.0 was an appropriatethreshold:
higherthresholdgendednotto Iter outthetargetednoise,andloweronesremoredtoo mary

valid results.Collocationswith a PMI scoreof 1.0 or higherare Itered.

To Iter out thesemarked constructionsfrom , We calculatethe percent-
ageof identi ed asnoise,andlabel this . We thencalcu-
late the percentagef phrasesn which are followed by of, which is labelled

. Multiplying thesetwo numberstogethergivesthe percentag®f resultsfor
the LVC underconsideratiorwhich arefollowedby of andwhich arealsoidenti ed asnoise.
This percentage, , isremovedfrom

Obviously, thesearcheperformedfor “LVC+of” do notavoid thethousand-instandanit
on Googlesearchqueries. However, they do allow usto partially relax this constraintas it
appliesto candidateLVCs. By gatheringmore detailedinformation on a speci ¢ subclass
of expression(the “LVVC+of” constructions)we canapply ary knowledgegainedaboutthis
speci ¢ constructionto the datare ecting the candidateLVC itself; in effect, we focuson

particularinstancesvherenoisemay appearandapplyarny knowledgegainedto thewhole.
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MWE Filtering

Anotherinstanceof noisecomesfrom wordsusedin compoundohraseandMWES involving
thestemform of the predicatve nounastheir rst word. For example, giveaslide in-
cludesmary instancegoncerninghow onecangivea slideshowandgivea slide presentation
Thesefalsehits, like the phrasedsdenti ed by PhraseFiltering, in ate the frequeng counts
for thecandidatd.VC andleadto computationaratingsdiffering from humanevaluations.A
processvery similar to PhraseFiltering, called MWE Filtering, is designedo Iter out this
noise.

Here,thetop twentywordsfollowing the LVC itself areaddedto a set,

For each , we gatherthe necessarynformationfor PMI: the frequeng
of “PN + ” (e.g.,slideshow, thefrequeng of PN (e.g.,slide), andthefrequeng of (e.qg.,
show. PMI is againappliedasin PhraseFiltering, and resultswhich have a scoregreater
thanor equalto 1.0 are marked as noise. We determinethe percentagef iden-
tied asnoise,andremove this percentagdrom . The tamgetedsearches
for “LVC+of” thatwereusedin PhraseFiltering cannotbe extendedto MWE Filtering, and
thereforethis measureelieson slightly coarsedata.

The above threetechniqueof PunctuationPhraseand MWE Filtering areappliedasap-
propriateto eachGooglesearchperformed Exceptingthosefor the LVC-Fregmeasurepunc-
tuation ltering is appliedto all searchesandboth PhraseandMWE Filtering areadditionally
appliedto all searche$or candidatd.VCs. The Itered numberof resultsreturnedis usedby

our computationameasures.

4.4 Statistical Measuresof Association

The two statisticalmeasuresve employ for evaluationof our experimentalresultsare Spear
man Rank Correlation,which measureghe linear relationshipbetweentwo setsof ratings,

andWeightedKappa(Cohen,1960,1968;Carletta,1996),which measureagreementSpeas
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manRankCorrelation(SRC)usesthe raw ratingsof candidateconstructionsyhile Weighted
Kappausescateyorizeddata, correspondingo labelsof LVC acceptabilityof "poor’, “fair’,

and ‘good'. WeightedKappathereforere ects a coarsetlevel of agreementhanthe correla-
tion capturedoy SRC.We now considelissuesassociateavith thesetwo measures detail,as

both have idiosyncrasiesvhich canaffect theinterpretatiorof their results.

4.4.1 SpearmanRank Correlation

SpearmarRankCorrelation(SRC)is usedto measurghe degreeat which two annotatorsank
candidatd_VCs in the samerelative order SRCis basedon Pearsors correlationcoefcient
(Altman, 1991), but differsin thatit is a non-parametricank statistic: the statisticalranking
of datapoints,ratherthantheir values,is considered.Sincethe majority of membersn the
Levin andWordNetsemanticclassesve employ arerated poor’, a measurdike SRC,which
doesnot assumea normaldistribution, is appropriate.To calculateSRC,the scoresassigned
to eachcandidatd.VC by eachannotatorareranked, from highestto lowest. If two or more
candidatesrerankedidentically by anannotatorthe meanrankof all tied candidatess used.
A high SRCscoreis achievedif candidate$requentlyhave the samerankingassignedo them
by bothannotatorsLik e Pearsors correlationcoefcient, scoregangefrom  to : ascore
of indicatesperfectagreementwhile ascoreof  indicatesperfectdisagreement.
Unfortunately therearesituationsin which SRCscorescanseemnot to accuratelyre ect
thedata.As ratingsgeneratedby our computationaimeasurearecontinuouswhile thehuman
ratingsare morediscrete thereare mary ties amongthe humanratingsandvery few, if ary,
amongthoseof the computationameasuresSucha situationcanleadto SRCscoreswhich
vary signi cantly with slight changedo thedata.For example,giventhedatain Table4.5,the
SRCscoreis .85, indicatinga signi cant positive correlation. However, if RaterB's rating of
.25is changedlightly, to .20,the SRCshiftsto .17, indicatinga marginal positive correlation.
This occursbecause¢he averagerankof thetied ratings(the "1's) haschangedrom beinglow-

estranked,whencomparedo theRaterB's rankingsto beingrankedasmid-rangeentries and
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Raw Data Ranked Data
RaterA | RaterB || RaterA | RaterB
1 21 25 1
1 22 25 2
1 .23 2.5 3
1 24 25 4
2 .25 5 5
3 .50 6 6

Table4.5: lllustrative exampledatafor usewith SpearmarmankCorrelation.

sothe SRCshiftsaccordingly Thisis obviously an extremeexample,andnot a fair demon-
strationof SRC,but similar behaiour is alsoapparento a lesserdegreein morerealisticdata
dravn from anappropriatelysizedsample.As our experimentancludemary candidatd.VCs
with humanratingsof 1, this behaiour canaffect results. We thereforealsoinclude another
measureWWeightedKappa,which is usedalongwith SRCto presenta morecompletepicture

of thedata.

4.4.2 The Kappa Statistic

Kappa(Cohen,1960; Carletta,1996) comparesagreemenbf two annotatorausing discrete
labelsandaccountdor agreementueto chance A Kappavalueof O indicatesno agreement
betterthanallowedfor by chancewhile Kappavaluesof and indicateperfectagreement
andperfectdisagreementespectiely. Givenan contingenyg table,Kappais de ned
as , Where is obsenedagreemenand is expectedagreement.
Obsened agreements de ned as the sum of the diagonaldivided by the total numberof
ratings: . Expectedagreements de ned as
, Where isthesumofrow and isthesumofcolumn .

A limitation of Kappawhenappliedto orderedcateyoricaldatais thatall disagreementare
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weightedequally If a candidates marked by oneannotatoras poor' andthe otheras “fair’,
thisdisagreemeris consideregustasstrongasonein whichacandidates rated poor' by one
annotatorand ‘good' by another WeightedKappa(Cohen,1968),a generalizatiorof Kappa
which treatsnearagreementgs being “more correct” than cleardisagreementds therefore
employed. For ourthreecategoriesof "poor’, ‘fair', and good', astandardinearratingscheme
is used,in whichtheweightfor therow , column is givenby . full agreement
is creditedat 100%,nearagreemenat 50%,andfull disagreemeris notcredited.

To calculateWeightedKappa, computationakatingsand humanjudgmentsare put into
buckets. Again, threebucketsareemployed, correspondindgo "poor’, “fair', and'good' can-
didates.The humanratingsthe employ samethresholdsestablishedn Section4.2.2andused
throughouthis paper As noneof thecomputationaineasuresaze PMI areunderstoodo have
apointof noassociationall computationathresholdsaredeterminedhroughexperimentation
on developmentdata. A rangeof thresholddgs tested,and eachis judgedby its bucket dis-
tribution: thresholdswhich generatea distribution of candidatesnostsimilar to thoseof the
humanjudgesare chosen. In casesvheretwo or more thresholdshave bucket distributions
thatareboth optimalandcomparabldgo oneother the thresholdwith the higherKappascore
is choserf. Thethresholdemplo/edarelistedin Table4.6,andre ect acoarseflevel of LVC
acceptability:ratherthancontinuouslyquantifyingthe acceptabilityof eachconstructionwe
simply requirethatit be classi ed as good', ‘fair', or ‘poor'. It is believedthatbetteragree-
mentwill beachiezedwith thesecoarsemeasureshanwith theirmoredetailedversions Note
thatasthresholddor the computationameasuresrechoserto re ect the bucket distribution
of thehumanratings,testsof maiginalhomogeneitywhich compareonerater's propensityfor
usingeachrating cateyory to anothers) would not berevealing.

However, Kappahas“paradoxes”in its interpretationasnotedby Feinsteinand Cicchetti

5Thisprocessavoursasimilarbucketdistribution overahighKappascore However, the proces®f examining
Kapparst, andthenconsideringoucketdistributionin orderto breakties,resultsin very similarthresholdseing
chosen.The advantageof consideringoucket thresholdsrst is thatoutlier cases—casédn which a high Kappa
scoreis achieved,by chancepn datawith animprobablebucket distribution—arenot selected.
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Computational Measure | "Poor' Threshold | "Good' Threshold

PMI

LVC-PMI

LVC-Prob

LVC-Freq

Table4.6: Thresholdsestablishedor placing the outputof eachcomputationameasuranto “good',

“fair', and poor' buckets.

RaterA RaterA
Yes | No | Total Yes | No | Total
Yes| 40| 9 49 Yes| 80| 10 90
RaterB No 6| 45 51 RaterB No 5 5 10
Total | 46| 54| 100 Total | 85| 15| 100
Table4.7: Two related contingeng tables.Both have obsered agreementf .85. Theleft-hand
tablehas while theright-handtablehas

(1990),LantzandNebenzah[1996) and others: datawith high obsered agreementayre-
ceive alow Kappascoreif onecateyory of datais signi cantly more prevalentthan others.
ConsiderTable4.7,dravn from Byrt etal. (1993). While both contingeng tableshave a high
obsered agreemenof .85, the left-handtable hasa Kappascoreof .70 while the right-hand
table hasa Kappascoreof only .32 (Byrt et al., 1993). This low scoreis dueto high agree-
menton a single cateyory causingvery high obsened agreementywhich affectsthe measure
of chanceagreementAs Kappais normalizedso thatchanceagreements scoredat O, lower
Kappascoreghanmight be expectedarereturned.

CicchettiandFeinstein(1990)claim this behaiour is a“desirable’quality of themeasure:
it canbe seenasre ecting thedif culty in rising above chanceagreemenin situationswhere

navely choosinga particularlabelmakesagreementik ely. However, asthethresholdgor our
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computationaimeasurearechosersuchthattheirbucketdistributionre ectsthatof thehuman
ratings—thg are not chosento unjusti ably favour a particularcateggory—the“punishment”
appliedby Kappafor highagreemenon a singlecateyory is undesirableWe agreewith Lantz
andNebenzah(1996),Byrt etal. (1993)andothersin suggestinghatthe Kappastatisticalone,
asanomnibusmeasuregdoesnotfully re ect agreementAlong with Kappascoreswe report
weightedobsened agreement, , sothata morecompletepicturemay be shavn. Note that
we cancompareKappascoredetweerour own measuressincethe sameissuesof prevalence
apply, but comparingour Kappascoresto othersdravn from more evenly distributeddatais

problematic.



Chapter 5

Experimental Results

Our experimentdocuson severaldifferentaspect®f light verbconstructionsWe hypothesize
thatsemanticallysimilar complementsnayhave thesamepatternof co-occurrencacrosdight
verbs,andwish to examinethis hypothesidy comparingthe behaiour of the complementn
an LVC acrosssemanticclasses.We expectto nd distinct patternsof acceptabilityamong
the semanticclassesextractedfrom Levin (1993) and WordNet, and acrossthe light verbs
themseles.We believe thedifferencedetweerthetrendsof acceptabilityof the WordNetand
Levin classesnayindicatewhethergroupingPNsaccordingo bothnominalandverbalsenses
is moreappropriatdor LVCs thangroupingthemby verbalinformationalone. We testthese
hypothesedy comparinghumanacceptabilitjjudgmentswhich we treatasa standard{o our
four computationameasures.

Theresultsof our experimentsarepresentedh this chapter In the next section the proper
tiesof thehumanacceptabilitjudgmentsareconsideredWe thenexaminethe performancef
our computationameasuresyst atthe moredetailedlevel capturedoy SpearmarrRankCor-
relation (SRC),andthenat a coarserevel of acceptabilitymeasuredy the WeightedKappa
statistic. Finally, we evaluatethe performanceof our data ltering techniquesandexamine

resultswith andwithout thesetechniquespplied.

61
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5.1 Human Acceptability Judgments

As notedin Section4.2.2,we employ pilot resultsin which two expertnative spealersof En-
glishratethe acceptabilityof eachpotential’LV a PN” constructionOn testdata,thetwo sets
of Levin classratingsyielded linearly weightedKappavaluesof .72, .39, and .44, for take,
give andmale, respectrely, and.53 overall. WordNetclassratingsyieldedlinearly weighted
Kappavaluesof .79, .66,and.69, for take, give andmale, respectrely, and.71 overall. Dis-
cussionof instance®f disagreemenwhenratingLevin classeded to moreconsisteng when
ratingWordNetclasses.

We averagebothsetsof ratingsto form aconsensuset,in orderto judgethecomputational
measuresgainsta single standard. Before ratings were averaged,the two ratersmet and
discussedhecasesn whichthey disagreedy morethanonepoint. In testdata,thisled to 4%
of theratingsbeingchangedNotethatthisis 4% of ratings,not 4% of items,asin somecases
both raterschangedheir ratingsafterdiscussion.For ary remainingdifferencesthe average
of bothratingswasused.

We examinetrendsin humanratingsacrosdight verbsandthe semanticclasseof their
complementsgy placingthe (consensus)umanratingsin bucketsof “poor’, “fair', and good'.
Again, the thresholdsestablishedn Section4.2.2 are employed: the "poor' bucket contains
ratingsfrom 1-2 , the fair' bucketcontaingatingsfrom 2—-3, andthe ‘good' bucketcontains
ratingsof 3 andabove. Table5.1 shaws the proportionof candidatesated fair' or above for
eachlight verbacrosgheLevin classesThelight verbsshow very differentacceptabilitywith
differentLevin classes—foexample,giveis fairly goodwith 43.2,while take is very bad,and
the patternis reversedfor 51.4.2. Overall, give allows more LVCs thanthe othertwo light
verbs.

Table5.2 shows a similar distribution of “fair' or above ratingsfor eachlight verb across

Trendsweresimilar on developmentata.Agreemenbn development_evin classesvaslower dueto initial
differencesn interpretatiorof theratings.The Levin classeyieldedscoresof .37,.23,and.56 for take, give, and
male, respectiely, and.38 overall. WordNetclassesachievedlinearly weightedKappascoresof .77,.70, .63 for
take, give, andmale, with .71 overall.
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Levin Classes

Proportionof Acceptabld.VCs

Class| Size | take | give | male Overall
18.1,2| 35| .23| 51 .26 .33
30.3| 18| .28| .44 A7 .30
43.2* 35| .03| .54 .26 .28
5142, 10| .70| .30 .10 37
Overall 96| .21| .49 .22 31

Table5.1: The proportionof constructiongated fair' or above in Levin testclassesA ™' indicatesa

randomsubsebf verbswereusedin theclass.

WordNet Classes
Proportionof Acceptabld.VCs
Class| Size | take | give | male Overall
18.1,2| 35| .26| .60| .17 .34
30.3| 35| .14| .20 A1 15
43.2| 35| .09| .34| .34 .26
5142 35| 46| 31| .23 .33
Overall | 140 | .24 | .36 21 27

Table5.2: The proportionof constructiongated fair' or abave in WordNettestclasses.

the WordNetclasses.Again, give allows more LVCs thanthe otherlight verbs. Comparing
Levin andWordNetclasseswe nd similartrends:class43.2is poorwith take but betterwith

give, and51.4.2hasthe oppositepattern. While the proportionsof acceptabld.VCs across
light verbsare not identicalto thoseof the Levin classesthey arevery similar. The method
we useto choosea representatie seedfor theseWordNetclassesnay beresponsibldor their

similarity to their Levin counterparts.
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TheseexperimentsndicatethatWordNetcanbe usedasa sourceof semantigroupingsof
PNs. This is a signi cant result,asLevin classesappropriategfor LVCs areinfrequent. Inter
estingly class30.3is the only classin which a fully representatie seedcould not be found,
andthis classexhibits thelargestoverall differencebetweerLevin andWordNetversions.Ex-
aminingindividual light verbs,we seethatclasses80.3and51.4.2shawv thelargestdifference
betweerlLevin andWordNetversionsthesearealsothetwo classesvith thelargestdifference
in sizebetweerthetwo classtypes.Partof thisdifferencen theproportionof acceptabléVCs

may stemfrom thelargersamplesizein the caseof the WordNetclasses.

5.2 Computational Measuresof LVC Acceptability

We focus on the analysisof our four computationaimeasure®n unseerntestdata: in most
casedrendsaresimilar on developmentdata,andary differencesetweernhe two arenoted.
Recallthat we areinterpretingPMI asan informedbaseline.We rst considerSRCresults,
which illustratethe performanceof our measuresit a ne-grainedlevel, andexaminetrends
in correlationby light verbbeforeconsideringmore-detailedlass-basetehaiour. Weighted
Kappascoresarethen explored, which re ect the performanceof our measurest a coarser

level of acceptability Finally, we examinethe performanceof our ltering techniques.

5.2.1 Correlation BetweenComputational and Human Ratings

Table5.3shavstrendsacrosdight verbsfor eachmeasurevhenrun againsicandidatesiravn
from Levin classesTable5.4 shavs performancevhentestedagainstWordNetclassesGen-
erally, reasonablgoodcorrelationswvith humanratingsare seenacrossnostmeasuresCon-
sideringperformanceacrossboth Levin andWordNet,we seethat while both LVC-PMI and
LVC-Proboutperformthe baseline the latter doesso by a wider mamgin. The only measure
whichis generallyworsethanthe baselings LVC-Freq,.

Thelight verbtake achievzesthe bestcorrelationson both Levin andWordNetclassesfol-
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SpearmanRank Corr elation Scores: Levin Classes
Light Verb | PMI | LVC-PMI | LVC-Prob | LVC-Freq
take | .50 .53 .55 51
give| .27 .30 A7 .36
male | .24 .33 46 .10
average| .34 .38 49 32

Table 5.3: SpearmarRank Correlationscoresfor eachcomputationaimeasurewhen testedagainst

candidateconstructiongiravn from Levin classes.

SpearmanRank Corr elation Scores: WordNet Classes
Light Verb | PMI | LVC-PMI | LVC-Prob| LVC-Freq
take | .59 .61 .62 .55
give| .50 .52 51 24
male | .31 .35 .33 31
average| .47 49 49 37

Table 5.4: SpearmarRank Correlationscoresfor eachcomputationaimeasurewhen testedagainst

candidateconstructiongiravn from WordNetclasses.

lowedby giveandmale. Similar patternsverefoundon developmentdata,althoughthe SRC
scoresachiezed herewere generallyslightly higher The poorercorrelationswith male and
give may be partly dueto the dif culty in rating the constructions:both annotatorgeported

having moredif culty with LVCsinvolving thesedlight verbsthanwith take.

Comparison of correlation scoresbetweenLevin and WordNet classes

A comparisorof the correlationsof the Levin classego thoseof the WordNetclasseshowns

someinterestingdifferences. While the generaltrendsacrosslight verbsare the samefor
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candidategieneratedisingboth Levin andWordNetclassegall measureperformbestwith
candidatesnvolving take, for instance)LVC-PMI andLVC-Probsharesimilar performance
whenrun againstWordNetclassesanddo not appreciablyoutperformthe baseline However,
the baselinePMI measureperformsconsiderablybetteragainstthe WordNet classeghanit
doesagainstheLevin classeswhich mayindicatethatthesecandidateeonstructiongreeasier
to classifyusingPMI. (Ondevelopmentata,theaverageSRCscoresachievedby all measures
werevery similar betweergroupsof semantiaclassesdiffering at mostby .02.) This boostin
thebaselinealsohelpsLVC-PMI achiare bettercorrelationsasit is a measurdasedon PMI.
LVC-Probdoesnot performsigni cantly worseagainstWordNetclasseghanit doesagainst
Levin classesput neitherdoesit performsigni cantly better: againsta baselineachieving
bettercorrelation|t fails to distinguishitself.

LVC-Probs failure to exceedthe performanceof the WordNetbaselinecan be attributed
to literal usagef commoncomplementsAny phrasewith the sameword orderof anLVC
is interpretedoy all our measuresisevidenceof LVC usage.For example,the candidatdake
a string (WordNetclass30.3)is often usedliterally in a programmingcontext: Thisfunction
takesa string and an integer. While this affectsboth groupsof semanticclassesthoseauto-
matically extractedfrom WordNetareprimarily affected:PNswith a stemform rarelyusedas
averbandfrequentlyusedasa nounseemmoreopento aliteral interpretationandthesePNs
aremoreoftenfoundin the WordNetclasseshanin thoseof Levin.

While all measuregincorrectly)treatsuchliteral phrasessevidenceof LVC usagelVC-
Probhasparticulardif culty with literal usesof unacceptableonstructionsnvolving common
complementsCandidateconstructionsuchasmale a train (WordNetclass51.4.2)andtake
alink (WordNetclass43.2)areratedanomalouslyhigh by LVC-Probbecauséhe generalfre-
gueny of the complemen{( ) is includedin the measure Whenthe complemenof a
candidateconstructions frequentlyemployedthroughouthe corpus,astrain andlink are,the
signi canceof ary evidenceof LVC usages overrated Further asliteral usage®f alight verb

andcomplemenareinterpretedasevidenceof LVC usagethis problemis compoundedSince
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the PMI-basedmeasureslo not take the overall frequeng of the complemeninto considera-
tion, they do notratetheseunacceptableandidatesshighly, andperformbetteragainsthese
candidateshanLVC-Probh PNswith commonnominalforms seemmoreopento this literal
interpretationandasPNswith relatively rareverbsenseseemnlesslik ely to beincludedin the
Levin classesthis canaccountfor thelessremarkablegerformanceof LVC-Probwhentested
againstWordNetcandidates.

Finally, boththe Levin andWordNetclassesncludePNswith stemformscommonlyused
asadjectvesandrarely usedasnouns. For example,the PN clear hasonly two nounsenses
listedin WordNet,bothof which seenrelatively rareandspeci c: clearasin escapingpunish-
ment(Lookslike you're in theclear), andclear asin beingin the open:\We left the forestand
into the clear. However, while the candidategive a clear is rated poor' by bothannotatorsit
is ratedquite highly by thecomputationameasuresyhich hurtscorrelationscores.Thisis pri-
marily dueto its useasanadjectve: mary phrasesverefoundreferencingclearexplanations,
signals pictures,etc. As will bediscussedn Section5.2.3,while someof thesephrasesvere

Itered, not every instanceappearswith enoughfrequeng to be agged, andthoseinstances
agged canbesubjectto underestimation.

While the classesautomaticallyextractedfrom WordNet may be more noisy thanthose
selectedrom Levin (1993),the WordNetsetsnevertheleshave averageSRC scoresexceed-
ing thoseof the Levin classes.As thereare a limited numberof Levin classesappropriate
for our task, the useof WordNetas a sourcefor semanticgroupingsof predicatve nounsis

recommended.

Trendsin acceptability by semanticclass

Table 5.5 shaws class-base®RC scoreson unseencandidateLVCs generatedvith Levin
(1993), while Table 5.6 shawvs the sameinformation with unseencandidateggeneratedis-
ing WordNet. Distinct trendsin LVC acceptabilityare shovn by theseclasses.Examining

SRCperformanceon Levin classeslone,we seethat, with two exceptions,LVC-PMI meets
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SpearmanRank Correlation Scores: Levin Classes
Light Verb Class| PMI | LVC-PMI | LVC-Prob | LVC-Freq
18.1,2| .47 .56 .54 49
30.3| .56 .57 .60 .53
take | 43.2* | .43 43 51 31
51.4.2| .54 .54 .55 .69
average| .50 .53 .55 51
std.dev. | .06 .06 .04 16
18.1,2| .26 .26 .54 41
30.3| .28 .45 .62 72
give| 43.2* | .39 .36 45 48
51.4.2| .16 .13 .25 19
average| .27 .30 A7 .36
std.dev. | .09 14 .16 .39
18.1,2| .29 .45 .52 45
30.3| .26 A7 43 .03
male | 43.2* | .09 .07 7 40
51.4.2| .32 .32 .73 .38
average| .24 .33 .46 .10
std.dev. | .11 .18 .23 .39
all | average| .34 .38 49 .32
std.dev. | .14 .16 15 .35

Table5.5: SpearmarRank Correlationscoresfor eachcomputationameasureacrosseachlight verb

andLevin class.A "*' indicatesarandomsubsebf verbswereusedin theclass.

or exceedghebaselineacrossall light verbsandclassesWe seefurtherthatin every instance
LVC-Proboutperformsthe baseline. The only measurdo performgenerallyworsethanthe

baselineis LVC-Freq, which at worst achiezes negative correlationson the semanticclasses
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SpearmanRank Correlation Scores: WordNet Classes
Light Verb Class| PMI | LVC-PMI | LVC-Prob | LVC-Freq
18.1,2| .55 .62 .69 49
30.3| .38 .39 46 45
take 43.2| .63 .64 .59 48
51.4.2| .78 .79 74 .78
average| .59 .61 .62 .55
std.dev. | .17 .16 12 15
18.1,2| .57 .60 .63 41
30.3| .57 .57 51 14
give 43.2| .65 .66 49 .25
51.4.2| .23 .23 A2 A7
average| .50 52 51 24
std.dev. | .19 19 .09 A2
18.1,2| .44 A7 .45 .22
30.3| .40 .34 .34 45
male 43.2| .13 .35 .14 .20
51.4.2| .27 .25 .38 37
average| .31 .35 .33 31
std.dev. | .14 .09 .13 A2
all | average| .47 49 49 .37
std.dev. | .19 .18 .16 .18

Table5.6: SpearmarRank Correlationscoresfor eachcomputationameasureacrosseachlight verb

andWordNetclass.

found mostdif cult by the othermeasuresAgain, againstWordNetclassesPMI, LVC-PMI,
andLVC-Probperformsimilarly.

Someof the worst correlations for all measuresare with the Levin and WordNetclass
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43.2(Verbsof SoundEmission).Here,it seemedhatseveralsalientsense®f thewordswere
missedby the humanraters. While it is acknavledgedthat using only two ratersto reach
consensuss notideal,it washopedthattwo raterswith differentbackgroundsvould be aware
of mostsense®f a given candidatelVC. However, this wasnot alwaysthe case:class43.2
in particularhasmary instancesn which therearesensesinfamiliar to the humanraters.For
example thecandidatdake a click is rated 1' by bothratersyetit is amongthe highest-rated
candidatesf all measuresThisis primarily dueto phrasesisingthe constructiorin anonline
sensesuchastakea click here (with yourmouse)take a click onthewild side etc: suchusages
wereunfamiliar to bothannotatorsThe phrasemale a click similarly revealedusagesuchas
male a click onthe buttonwhichwerethoughtby humanannotatorso belargely unacceptable.
Thisunderlineghedif culty for humansn ratinga semi-productie construction.

Levin class51.4.2is thesemanticlassmostsusceptibléo the swingsin SRCdiscussedh
Section4.4.1:with tenmembersit is thethe smallesttlassemployedin our experimentsand
further, 70%of its candidatd_.VCsinvolving thelight verbmale areratedl (unacceptable)y
thehumanannotatorsComparinghe performancef ourfour measuresnthisparticularclass
andlight verb, we seethat LVC-Prob's correlationof .73 signi cantly outperformsthe other
measuresall of which have SRC scoreslessthan.38. While thesescoresdo re ect better
correlationin the caseof LVC-Prob, this differenceis slightly exaggeratediue to the high
proportionof tied ratings. LVC-Probbene ts from this exaggeratiorbecaus®f the ratingsit
assigndo thethreenon-tiedmembersn this class while the othermeasuresio not.

While the performancef LVC-Freqon give candidatd.VCs dravn from WordNetis well
below that of the baseline LVC-Freqoutperformsthe baselineon candidateLVCs involving
givedravn from Levin. Thisis someavhatsurprising,asLVC-Freqdoesnot detectthe dative
form, but this high SRCis accompaniedby a very high standarddeviation, indicatingsigni -
cant uctuation in results.The classwith which LVC-Fregachievesits bestperformancevith
give, Levin class30.3,includesmary PNssuchaspeepandsniff which canbe employedin

both dative andnon-datve LVCs. Correspondinglythe membersof Levin class51.4.2,with
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which LVC-Freqgachievesits worst Levin give correlation,includesmary candidatecomple-
mentssuchasride andpaddlewhich seemto be employedmostoftenin dative LVCs.

Finally, it is worth noting that commontypographicerrorsform an unexpectedlystrong
sourceof noisein sometestclassesThis affectssomecandidatesnorethanothers:a partic-
ular exampleis the unacceptableandidatemale a think from WordNetclass30.3, which is
ratedhighly by computationameasureslueto a substantiahumberof resultswhich areclear
typographicerrors. Phrasedik e male a think sauceareobviously intendedeitherto be male
a thick sauceor male a thin sauce but asour measuretave no way of knowing this, these
phrasesare consideredo be evidencefor LVC usage. This typo seemsespeciallyprevalent

becausehewordsthin andthick areeachoneerroneougkeystroke away from theword think.

5.2.2 AgreementBetweenComputational and Human Ratings

We now inspectthe performanceof our computationameasuresvhena coarserevel of ac-
ceptabilityis consideredin whichanacceptabilityabelof “poor’, “fair', or ‘good'is appliedto
eachcandidateonstructiorratherthanamorepreciseating. Table5.7 shavs WeightedKappa
andweightedobsened agreementor the Levin classesand Table5.8 showvs the sameinfor-
mationfor the WordNetclassesWith the acceptabilitythresholdslevelopedin Section4.4.2
applied,all measuregenerallyperformcomparablywell. LVC-ProbandLVC-Fregslightly
outperformthe PMI-basedmeasuresvhentestedagainstLevin classeswhile again,against
the WordNetclassesthe differencedetweemrmeasuresrelesspronouncedMost interesting
is the performanceof LVC-Freq,which achiezesthe bestperformanceof all measuresvhen
testedagainstevin classesandonly moderatelyunderperformsvhentestedagainstWordNet
classes.t seem<learthatwhile the computationameasureslio not all make the same ne-
graineddistinctionsof LVC acceptability they performmore similarly at the simplertask of
merelydistinguishinggoodcandidateconstructiongrom fair andpoorones.

Valuesof  aregenerallylow, for the reasonof prevaleny discussedn Section4.4.2.

While the“paradox”of low Kappascoreswith high obsenedagreemenappliesto all classes,
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Linearly WeightedKappa and Agreement

Levin Classes

Light Verb PMI LVC-PMI || LVC-Prob || LVC-Freq

take | .44 77| .43 .79 .39 .85| .35 .80

give|| .23 59| .25 59| .36 .77 .56 .86

male | .13 .81 .17 .79 .18 .82 .14 .82

average|l .27 .71| .26 .72| .28 .81 .30 .81

Table5.7: WeightedKappa( ) andweightedobsered agreemen{ ) for eachcomputationamea-

surewhentestedagainsttandidateconstructiongrom Levin classes.

Linearly WeightedKappa and Agreement
WordNet Classes

Light Verb PMI LVC-PMI || LVC-Prob || LVC-Freq

take || .57 88| .52 86| .50 .86| .42 .82

give|| .35 .74\ .36 .74 .42 80| .27 .73

male || .26 .80 .22 .78 .22 .74 .27 .73

average|| .39 .82 .39 .81} .36 .80} .30 .75

Table5.8: WeightedKappa( ) andweightedobsered agreemen{ ) for eachcomputationamea-

surewhentestedagainsitandidateconstructiongrom WordNetclasses.

Levin class43.2, when combinedwith the light verb take, illustratesthis issueparticularly
well. The similar contingeng tablesgeneratedereby the PMI andLVC-Probmeasuresire
shavn in Table5.9. Both the PMI and LVC-Prob measurehave approximatelyequal (and
very high) weightedobsened agreemenof , but while PMI has , LVC-Prob



CHAPTER 5. EXPERIMENTAL RESULTS 73

HumanRatings HumanRatings
Poor | Fair | Good | Total Poor | Fair | Good | Total
Poor 34 0 0 34 Poor 33 1 0 34
PMI Fair 0 0 1 1 LVC-Prob | Fair 1 0 0 1
Good 0 0 0 0 Good 0 0 0 0
Total 34 0 1 35 Total 34 1 0 35
Table5.9: Two contingenyg tablesfor the Levin class43.2with thelight verbtake. Theleftmost

tablere ects the PMI measureandhasa weightedKappascoreof .66. Therightmosttablere ects the

LVC-Probmeasureandhasa . Both have high obsered agreemenof

has . Examplessuchasthesemalke it clearthatour resultsaresusceptiblgo large
swingsin Kappascoreswith only slightchangesn agreementtorthisreason, isconsidered
to beamoretelling (andreliable)way of comparingperformancédetweemeasuresalthough
averageKappascoresare not discountecentirely The trendsacrossaverage and are

guitesimilar.

5.2.3 Analysisof Filtering Techniques

Threetechniquedor Itering World Wide Web dataacquiredvia a generalpurposesearch
engine describedn Section4.3.3,areexploredin thiswork. Brie y, thesemethodsarePunc-
tuation Filtering, which removes internally-punctuateghhrasessuchas take. A walk from
searchresults;Phrasd-iltering, whichremovesnon-LVC phrasedik e givea strip of land from
the searchresultsfor the candidategive a strip; andMultiword ExpressiofMWE) Filtering,
whichremovesmultiword expressiondik e give a slide presentatiorfrom the searclresultsfor
the candidateLVC give a slide. In Table5.10we comparethe SRC scoresof the LVC-Prob
measuravhenno ltering is applied,whenonly Punctuatiorfiltering is applied,andwhenall
three ltering techniquesreapplied.While the datawe considererere ects only the corre-

lation scoresof the LVC-Probmeasurethe sametrendsarefoundwhen lItering is appliedto
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LVC-Prob SpearmanRank Corr elation ScoresAcrossFiltering Levels

No Filtering Punctuatiorfiltering Full Filtering

Class|| take give male | avg. || take give male | avg. || take give male | avg.

18.1,2|| .50 .55 56| 53| .52 .54 S5 54| 54 54 52| .53
303} .60 .61 41| 54| .62 .61 41| 55| .60 .62 43| .55
43.2* 49 .46 A3 36| 49 .44 10| .34 51 45 A7 | .38
5142} .62 .29 79| 57| .57 .29 79| 55| 55 .25 73| 51
18.1,2-wn|| .66 .61 40| 55| .69 .61 38| .56 .69 .63 A5 .59
30.3-wn|| .40 .49 31| 40| .46 .54 31| 44 .46 51 34| .44
43.2-wn|| .56 .45 A5 .39 .57 .45 A2 .38 .59 .49 14| 41
51.4.2-wn|| .76 .48 A3 56| .78 .45 40| 54 .74 42 38| 51

average|| .58 .50 41| .49 .59 .49 40| 49 59 .49 40| .49

Table5.10: SpearmarRankCorrelationresultsusingLVC-Probwith no Itering is applied,with Punc-
tuationFiltering applied,andwith PunctuationPhraseandMWE Filtering all applied.A ™' indicates

arandomsubsebf verbswereusedn theclass.Classegndingwith “-wn' aregeneratedvith WordNet.

the PMI andLVC-PMI measuresswell.2

Punctuation Filtering

PunctuationFiltering haslittle effect on correlationscores. AverageSRC scoreswith and
without PunctuatiorfFiltering appliedarenearlyidentical; however, this is becausenoisedue
to internalpunctuatiortendsto apply approximatelyequallyto all candidategonsideredNo
semanticclassor light verbis especiallysensitve to this sourceof noise,althoughall suffer
from it. On average,PunctuatiorFiltering removed 4% of instancedrom resultsets,with a
standarddeviation of 1%. While correlationresultsfail to changesigni cantly, Punctuation

Filteringis anefcient Itering method,asmary instancef noiseareremovedat very little

2Recallthatno ltering wasappliedto the LVC-Fregmeasureas ltering out noisein this measurevould be
counterproductie.
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cost:noadditionalsearchearerequired.On searchesvith nowildcards,Punctuatiorfiltering
hasvery few falsepositives,asit is rarefor acceptabld.VCs without internal modi cation
to have internal punctuation.On searchesvith wildcards,PunctuatiorFiltering continuesto
remove thetargetednoise,althoughit doesbegin to Iter outmorevalid LVCs. We therefore

considerPunctuatiorfiltering to be bene cial, evenif resultsdo not changeconsiderably

Phraseand MWE Filtering

Very little overall changds obsenedwhenPhraseandMWE Filtering areapplied. Thereis a
slightimprovementin someclassesbut this is coupledwith a decreasén correlationin other
classespverall, resultsarevery similar. Threereasonsareapparenfor this behaiour: rst,
someLVCs appeamore often with phraseand MWE modi cation thanwithout. Secondly
while instance®f noiseare Itered from results,soareinstance®f valid LVC usage Finally,
thesamplesizeavailableto the Itering techniquess typically insufcient to correctlyestimate
the prevalenceof noise.We now considerttheseissuesn moredetail.

We assumewith ltering techniqueghat ary LVC capableof appearingwith phraseor
MWE modi cation is justascapableof appearingvithoutit, but therearecaseswvherethisis
notanappropriateassumptionThe LVC take a leap(WordNetclass51.4.2)is agoodexample
of this. While the LVC take a leap (off a building) seemsacceptablethe collocatedphrase
and nearidiom take a leap of faith is so prevalentthat it forms the majority of the contet
returnedwith thephraseake a leap. Additionally, thoughto alesserextent,the phrasesake a
leapforward andtake a leapbadkward arealsovery common.Theseconstructionsre agged
(incorrectly)asnoiseand Itered; with themremoved, evidenceof LVC usageof take a leap
is reducedby 54%. The LVC is judgedby computationameasureso be muchpoorerthanit
otherwisewould be.

Both Phrasd-ilteringandMWE Filtering areclearlycapableof erroneouslyagging collo-
catedphrasesssociatedavith anLVC asnoise.Lik e take a leapforward, othervery common

phraseareremovedfrom differentcandidatesgivea knod has Itered the phraseknod any-
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way, alongwith suchnoiseasknod out (punch). ThePMI thresholdemployedby our Itering
techniquesireestablishedlo minimizethesefalsepositives,but they dostill occasionallyccur
Most critically, the thousand-instanceeiling on Googlesearcheseverely constrainghe
PhraseandMWE ltering techniquesWhile we attemptto work aroundthis constraintwith
focusedsearchesor speci c phenomendthe“LVC+of” searchesletailedin Sectior4.3.3),it
is mostoftenthe casethatthe Itering measureareextrapolatingfrom arelatively smalland
non-randomrsortedsample.As a result,the amountof noiseaffecting candidatesendsto be
underestimatetb variousdegreesandaninsufcient numberof resultsareremovedto appre-
ciably alter candidatesscores.We did attemptvarioustechniquedor increasingghe amount
of resultsremoredwhena noisyresultis identi ed, but thesetechniquesvould oftenincrease
the skew: someclassesmproved, othersgot worse,andthe overall effect wasminimal. The
failureof theseltering techniqueso have alargeimpactonimproving correlationcanbe par
tially attributedto a lack of data,stemmingfrom the limited methodsavailablefor accessing
our corpus. As an example,WordNet class43.2 hasthe candidategive a phoneratedquite
high by computationameasures—asigh assecondlaceby LVC-Prob Mostof theevidence
comedrom phrasedik e phonecall, phonenumber etc. WhenMWE Filteringis appliedthese
phrasesreidenti ed and ltered, but asextrapolationfrom thethousandnstanceswvailableis
unreliable MWE Filtering tendsto underestimateAfter MWE Filtering is applied,the candi-
dategive a phoneis reducedn rankbut still remainsratedinappropriatelyhigh, appearingn
the middlerangeof candidatesndabove candidateshatseemmoreacceptablesuchasgive

aclick.

5.2.4 Summary of Experimental Results

Our experimentsshowv that LVC-PMI is a slightly improved measureover PMI at the task of
rating candidatdight verb constructionsandthat LVC-Probis moremarkedly improvedover
bothPMI andLVC-PMI. The LVC-Fregmeasuravasfoundto be poorat making ne-grained

distinctionsof acceptability but comparabldo the other measurest making coarse-grained
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distinctions.

We hypothesizedhatwhile PMI shouldindicatea collocation,LVC-PMI shouldfocuson
LVCs in particular and LVC-PMI doesshaw slightly strongercorrelations. Further LVC-
PMI is animprovementover previous work on LVCs, asunlike the earlier DiffAll measure
(Stevensonet al., 2004),it generallyexceedsthe performanceof PMI acrossall light verbs.
LVC-Probhasthe bestperformanceandis the preferredmeasureasit requiresonly slightly
moredatathanPMI, andfarlessthanLVC-PMI.

Distinct patternf acceptabilitywerefoundacrosghesemanticlassof thecomplemento
anLVC, aswell asacrosdight verbsthemseles.Semanticallysimilar complementareshovn
to have the samepatternof co-occurrencecrosdight verbs. In generalthe resultscon rm
our hypothesighatthe semantiaclassof the complements highly relevantto measuringhe
acceptabilityof “LV aPN” LVCs.

WordNetclassesreshonvnto re ect thetrendsin LVC usageof theLevin classfrom which
their seeds taken. While the WordNetclassesncludemoremembersvhich areusedliterally
thanthoseof the Levin classesthey do provide a usefulway of groupingtogethersemantic
classesf LVC complements.This is an importantresult, as Levin classesappropriatefor
LVCsareinfrequent.

The LVC-Probmeasurédnasparticulardif culty in ratingthe acceptabilityof literal candi-
dateswith very commoncomplementsandmary instance®f suchcandidatesrefoundin the
WordNetclassesThis accountdor the worseperformancef LVC-Probagainsthe WordNet
classeswhencomparedo the baseline.However, despitethis behaiour LVC-Probperforms
just aswell asthe baselinewhentestedagainstWordNet classesand outperformsit when
testedagainst_evin classeswhereliteral candidatesrelesscommon.

Finally, a needto look in moredetail at the propertiesof differentlight verbsis indicated.
Thelight verb male, which we hypothesizedo have behaiour differentfrom take andgive
doesperformworsethantake, but ataboutthe samdevel asgive Gatheringhumanratingsfor

giveandmale is dif cult, however, which may explainthelow correlationscores.Candidates
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involving the light verb take, with which we achieve our bestresults,were easiestfor our

annotatorgo rate.



Chapter 6

Conclusions

Light verb constructionsrea semi-productre classwhich, like mostmultiword expressions,
posethefamiliar problemof whetheror not (andhow) they shouldbelistedin acomputational
lexicon. Our goal in this work hasbeento investigatethe (semi-)productrity of light verb
constructionsandto develop computationaimeasuregor quantifyingtheir acceptability We
focusedon the particularclassof light verb construction(LVC) which emplgys a predicatve
noun (PN) asits complement.We predictedthat distinct patternsof acceptabilitywould be
found acrosssemanticclassesandlight verbs,and have shawn this to be the case. Pilot ex-
perimentsvhich capturehumanacceptabilityjudgmentsof light verb constructiondave been
performedandusedasagoldstandardvith whichto judgecomputationagdpproachesapturing
their acceptability

Candidatd_VCs wereformedby combiningthe Englishlight verbstake, give, andmale
with complementsiravn from two differentontologies. The semanticverb classef Levin
(1993)wereemployed, alongwith automaticallyconstructedsemanticclassesxtractedfrom
boththe nominalandverbalhierarchieof WordNet2.0 (Fellbaum,1988). A novel approach
was employed to extract appropriatecomplementgrom WordNetfor usein LVCs, andthe
semanticclasseggeneratedy this approachare shavn to re ect the trendsin acceptability

foundin corresponding.evin classes.

79
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We developedfour differentcomputationaimeasuregor quantifying LVC acceptability
andwe have comparedhe performanceof thesemeasuresacrossontologies light verbs,and
semantiaclassesWe have examinedthe performancef thesemeasurebothata ne-grained
level of acceptability at which all candidateconstructionsdhave a uniqueacceptabilityscore
assignedand at a coarserlevel, at which only rank labelsof “poor’, “fair', and ‘good' are
assignedEachcomputationameasureemploys World Wide Web datagatherediia a general-
purposesearchengine andwe have testedthe performanceof eachwith andwithout various
novel approacheso Itering web dataapplied. In this chapter we discusscontributionsand

limitationsof our work, anddetailpossibleextensions.

6.1 Summary of Contrib utions

Statistical measuesof LVC acceptability. Threenovel measuresresuggestedor quan-
tifying LVC acceptability LVC-PMI is an extensionof pointwisemutualinformation (PMI)
incorporatinglinguistic knowledge, LVC-Probis a probability formula which measureghe
likelihoodof a givenlight verbandpredicatve nouncomplementorming anacceptableon-
struction,andLVC-Freqis a simplemeasurevhich ratescandidateVCs by their frequeny
of usagen anoisycorpus.While LVC-PMI andLVC-Probbothoutperformthe baselinePMl

measurel.VC-Probdoessoby awider magin, andrequiredessdatathanLVC-PMI.

Fine- and coarse-grainedevaluation of measues. The PMI, LVC-PMI, LVC-Prob and
LVC-Fregmeasurell performat differentlevels whennuancedlistinctionsof acceptability
are desired. The bestmeasurds LVC-Prob, which outperformsthe baselinePMI measure
when testedagainstLevin classesand performsjust as well when testedagainstWordNet
classes.However, our resultsshowv that at a coarserevel of acceptability at which only a
labelof "good’, ‘fair', or “poor" is desired all measureperformaboutequallywell. LVC-Freq
canbeusedasa quick, inexpensve measurdor roughly quantifyingLVC acceptabilitywhile

LVC-Probcanbe employedwhenmore-detailedlistinctionsarecalledfor.
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Generationof semanticclasse®f predicativenouns. Ourpreviouswork focusednclasses
from Levin (1993),whichhasonly asmallnumberof semanticlassesppropriatdor ourtask.
We have detailedhereanapproactwhich allows setsof semanticallyrelatedpredicatve nouns
to beextractedfrom WordNet. A procesgor choosingarepresentatie seedrom aLevin class
is alsospeci ed. Whensucha seedis employed, the WordNet setsare shavn to re ect the
trendsof LVC acceptabilityfound in the correspondingd_evin classfrom which the seedis

taken.

An exploration of wildcards in webdata. As someLVCs arerarein smallerclassicalcor-

pora,our computationameasureemploy datagatheredrom public websearchengines.This
give us accesgo a vastbut noisy corpus,accesgo whichis limited by the searchenginein-

terface. Wildcards,which matchfor oneword, weretestedin our experiments.For example,
a searchfor take a * walk may returnpagescontainingphrasedik e take a long walk. While

thesesearchesllow morecomplex LVC usageto be detectedthey alsoallow in morenoise.
Variouslevelsof wildcardsweretested andresultsindicatedthatusingdatawith no wildcards
andonewildcard, combined,gave the highestconsensudetweencomputationabnd human
ratings. This resultis signi cant for future work on LVCs employing web data,andmay also
apply to other constructionsvhich canappearin similar internally-modi ed forms, suchas

verb-particleconstructions.

A survey of the stateof the art. A surwy of the stateof theartis providedbothin the eld
of linguistic analysisof light verb constructionsandthe eld of computationabpproacheso

LVCs. Additionally, variouswebextractiontechniquesreconsiderecdindevaluated.

6.2 Limitations and Futur e Dir ections

Mor e-detailedweb data. While a large corpusis requiredfor sufcient evidenceof LVC

usageto be found, using a general-purpossearchenginesuchas Googleis limiting, asthe



CHAPTER 6. CONCLUSIONS 82

informationreturnedwith queriesis oftentoo sparsefor linguistic application. As a result,
all of the computationameasuresre capableof consideringnon-L\VC usageof a candidate
constructionasevidenceof LVC usage.Unfortunately without part-of-speectiagsandwith
very little context available,it is dif cult to distinguishthe phrasegive a clear (explanation)
fromtheLVC giveatour. Thislimitation negatively affectstheaccurag of all measuresandis
tied to our decisionto employ a searchengineasour meansof accessingheweh Approaches
employing a privatecrawvl of webdatamay help solve theseissuesaslinguistic markupcould
beautomaticallyapplied;further, thedevelopmenof robust,public, linguistically-avaresearch

engineds encouraged.

Different approachesto Itering web data. It is clearthatour approacho ltering web
datais generallytoo conserative. The focuson extrapolatingfrom the rst 1000 resultsis
likely inappropriateandit is possiblethat measuresvhich rely on further searchenginere-
guestsarecalledfor. While this doesincur anadditionalcost,it would allow a moredetailed
procesdo take place. Two approachesuggesthemseles. Oneis to re-runsearchesftera
phrases identi ed by the noise ltering techniques.For example,if take a leap hasof faith
identi ed asnoiseby Phrasdriltering,thenasearctcouldberunfor “takealeap” “of faith”
(or“takealeap” NOT NEAR “of faith”, if suchoperatoraresupportedy thesearckengine),
andnew source®f noisesearchedor in theseresults.Thesesearchesvould remove all docu-
mentsin which the constructiorandthe targetedword or phraseco-occur While they clearly
overestimateéhe prevalenceof thetargetednoise,suchanoverestimatiormaybeanacceptable
one.

A secondechniquemay be to simply performadditionalsearchesor the candidate.VC
combinedwith eachnoisy phraseidenti ed. If a phrase is to be removedfrom the results
of a searchfor , ratherthan examining the thousandinstanceseturnedby the searchfor

for instancesof and extrapolatingto the whole, we could insteadsearchfor and

subtractthe numberof resultsfound herefrom thosefound for . For example,if phone
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call and phonenumberwere agged as noise affecting the candidateLVC give a phone
give a phone could have subtractedrom it give a phone
call and givea phonenumber. Thisprocessnight lter thetamgetedphrases
moreaccuratelybut requiresadditionalsearche$or eachelementof noiseidenti ed. It may
also be that correlationwith humanrankingswould drop using sucha technique,as these
searchesrethemselessusceptibldo theissuesof “falsehit” noisethey aretrying to elimi-

nate.Futurework exploring theseapproachegs calledfor.

Removing inappropriate membersfrom semanticclasses. Both the Levin and WordNet
classesncludemembersvhich aremorecommonlyusedasadjectvesthanasnounsor verbs,
or have only veryrarenominalsensesWe couldalterour methodof choosingPNsfrom Levin

andWordNet,requiringthatcandidatanemberde frequentlyemployedasbotha nounanda
verh This would move to excludesuchinappropriatemembers.The British NationalCorpus,
which featuregart-of-speeciags,is usedin thiswork to ensureghata candidatas frequently
usedasaverb: requiringthata candidatealsobe frequentlyusedasa nounwould be a simple

changehatwould likely increasdhe quality of our semanticlasses.

Mor e extensive human judgments of LVC acceptability. While the humanratingsof can-
didateLVC acceptabilityusedin this work enabledus to gaugethe performanceof our com-
putationalmeasureghereweresalientsense®f complementshatwerenot consideredy our
two judges. It could be thatusingjudgmentsof acceptabilitytaken from mary raterswould
solve someof the problemsstemmingfrom usingonly two judges.Additionally, asthe setof
averageratingsacrossseveralraterswould likely be more ne grainedthanthe setof average
ratingsacrosswo raters,the issuesof comparingdiscreteto continuousdataassociatedvith

SpearmarRankCorrelationwould belessenedHowever, suchratingsareexpensveto gather



Appendix A

SemanticClassesand Human

Acceptability Judgments

This appendixcontainsafull listing of the semanticlassesandthe humanacceptabilityjudg-
mentsusedin evaluatingthis work. Eachnumericalentry representshe consensusiuman
judgmentof the acceptabilityof the candidateconstructionformed by the predicatve noun
(PN) listedto theleft andlight verblistedabove. Ratingsrangefrom 1 (completelyunaccept-
able)to 4 (completelyacceptable)andpartial ratingsarepermitted.A ™*' afteraLevin class

numberindicatesarandomsubsebf theverbsin the classwereused.
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APPENDIX A. SEMANTIC CLASSES AND HUMAN ACCEPTABILITY JUDGMENTS

Levin Classesl8.1,2

PN | take give male

Levin Class30.3

bang 1 25 2
bash 1 275 15

batter 1 1 2
beat 1 2 25

bump 2 225 175
butt 1 15

dash| 2.25 1 3.5
drum 1 1
hammer| 1.5 1.5

hit| 35 35 325

kick | 3.75 4 3

knock 2 35 175

lash 1 1 1
pound 1 1 1
rap 1 225 2.5
slap| 15 25 1
smack| 15 25 1
smash 1 15 1
strike 1 15 1
tamp| 15 15 1
tap 1 3 175

thump 1 175 175

thwack | 1.5 2
whack | 1.75 2
bite 4
claw 1

paw 1 1
peck| 15 15
punch| 3.25 3.5
scratch| 15 2.75 1.75
shoot 1 25 1
slug 1 15 1
stab 4 25 325
swat 1 15 1
swipe| 1.5 1 125

'—\
~ =
B e e

PN | take give male
check| 1.5 2 3.25
gape 1 1 1
gawk 1 1 1
gaze 1 1 1
glance 3 275 1
glare 1 25 1
goggle 1 1 1
leer 1 225 15
listen| 2.5 3 1
look 4 4 1.75
ogle 1 1
peek| 3.5 1
peep 1 175 3.25
peer| 15 1 1
sniff | 3.25 2.75 15
snoop | 1.25 1 1
squint 1 1 125
Stare 1 1 1
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Levin Class51.4.2

PN | take give male

Levin Class43.2*
PN | take give male
beat 1 15 225
bellov 1 3 225
boom 1 25 225
bubble 1 1 125
burr 1 1 1
clang 1 225 2
clank 1 15 15
clap 1 2 15
click 1 2
crunch 1 1 15
cry | 15 15
hum 1 275 175
jingle 1 2 175
knock 2 35 175
peal 1 25 1
pipe 1 1 1
plink 1 1 15
plonk 1 1 15
plop | 1.25 2 2
putter 1 1 1
ring 1 3.25 15
screech 1 325 225
shriek 1 325 1.75
shrill 1 1 1
snap 1 1 1
sputter 1 2 15
strike 1 1 1
thunk 1 175 15
tick 1 2 15
ting 1 1.25 15
trill 1 2 2
trumpet 1 125 1
vroom 1 15 1.25
whir 1 25 2
whistle 1 3 1.75

cruise 4 25 225
drive 4 1.75 15
y 1 1 1

oar 1 1
paddle| 2.5 1.25
pedal| 1.5 1
ride 4 4
row 2 125
sail | 3.5 2
tack 2 125

N R PR R R
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WordNet Classesl8.1,2

WordNet Class30.3

PN
bang
bash

batter
beat
blow
box
clash
click
crack
cry
drip
drum
hum
lash
lick
pat
pick
poke
pound
rattle
roll
shame
shoot
sigh
slap
smack
snap
splash
stab
step
swing
thump
tip
trample

whip

take
1.25
1

1
15
3

1.
1

1
1
1
5
5
1
1
1
1
3.5
1
2.25
2.25
1

1
2.5

give
25
2.75
1
2.25

NN

2
1
1
5
5
4
1
1
2
1

4
35
1.5

2.75
1.5

2.75

25
25
15

2.25
3.5

male
25
15
1
1.75
1

1

1
25
15
15
15

2.75
1.25

=
S I S =

1.25

1
2

P PR, OO R, WA R R

PN
add
bluff
chill
chip
clean
clear
control
cook
cool
dawvn
exchange
I
t
y
freeze
grace
heat
increase
name
open
parallel
pin
plot
poison
project
put
redress
rest
run
separate
sketch
spike
string
temper
think

take

R P P OaOFRPNPRPRPRPRPRPRRPRPRPRPRRPEPAOPRPR

=

2.25
15

N N N N = = T = = T = = =

=
N
al

N N

give male
1 1
1 15
3.25 1
15 1
1 1
1 1
1 1
1 1
1 1
1 1
2 3.75
1.25 1
25 1
1 1
1 1
1 1
1 1
225 225
35 4
1 1
1 1
1 1
1 15
1 1
1 1
1 1
1 1
4 1
2.25 4
1 1
15 1
15 1.75
1 1
1
1
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WordNet Class51.4.2

WordNet Class43.2
PN | take give male
bang| 1.25 2.5 2.5
beat| 1.5 225 1.75
chatter 1 1 1
click 1 25 25
couple 1 1 1
drip 1 1 15
drum 1 1 1
echo 1 175 3
fax 1 1
glue 1 1
harness 1 1
hitch 1 175 1
insert 1 1 1
institute 1 1 1
knock | 2.25 3.75 2
land 1 1
lead | 3.5 1
link 1 2.75
lodge 1 1
mutter 1 225 15
phone 1 1 1
play 1 1 3.5
pop 1 25 2.5
rap 1 25 25
rattle 1 25 25
round 1 1 1
sigh 1 4 3
surround 1 1 1
tack | 2.75 1 1
tackle 1 1 1
tap 1 35 2
telephone 1 1 1
tether 1 1 1
thump 1 225 225
top 1 1 1

PN | take give male
budge 1 15 1
bustle 1 1 15

chop| 15 25 1
click 1 25 25
cimb | 25 2.25 2
crash| 1.75 25 3.75
cruise 4 15 1
dance 1 15 1.25
dodge 1 1 1
duck 1 1 1
falter 1 1 1
feed 1 1 1

ex 1 15 1
inch 1 1 1
hitch 1 175 1

hop| 3.5 25 1

hurl 1 15 1

kick | 2.75 4 2

leap 4 3 3
leave 4 275 1
mount 1 1 1

rol | 25 25 1.25

row 2 15 1

run 4 2 375

sail 4 1.25 1
shrink 1 1 1

slip 3 1 1
spring 1 1 1
startle 1 1 1
sweep| 25 25 2.5

train 4 1 1

trip 4 1 1

tumble 4 1 1
twist 2 2 2
wobble| 1.25 1.5 1
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AgreementScoresby SemanticClass

This appendixcontainghe full agreemenscoreqincludingWeightedKappa,obseredagree-
ment,andweightedobsenedagreementachiezedby eachcomputationameasurexgainsthe
Levin andWordNetclassesA *' afteraLevin classnumberindicatesarandomsubsebf the

verbsin theclasswereused.
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Linearly WeightedKappa and AgreementScores- Levin Classes
Light Verb Class PMI LVC-PMI LVC-Prob LVC-Freq

18.1,2|| .29 | .51 67| .34 | .57 69| .46 |.74 .83| .30 |.57 .70

30.3]| .31 |.61 67| b1 |.72 .78| .64 | .78 .86| .72 |.78 .89

take 43.2* .66 | 97 99| .38 | .91 .96 03] .94 .97 .04 |.89 .90

51.4.2|| 49 | .60 .75 .49 | .60 .75| .51 | .60 .75| .40 | .50 .70

avg. 44 | 67 77| 43 | .70 .79 .39 |.77r 85| .35 |.68 .80

std. dev. A7 | .20 .15} .08 |.16 .12 .29 | .14 .09} .31 |.18 .11

18.1,2|| .07 | .26 .46 .11 |.29 47| .28 | .54 .71| .30 | .63 .79

30.3]| .19 | .44 53| .17 |.39 50| .38 | .67 .75| .67 |.78 .89

give 43.2* A8 | .34 51| 22 | 40 56| .19 | .60 .73 | .40 | .63 .80

51.4.2|| 48 | .80 85| .48 |.80 .85| .60 | .80 .90 | .87 |.90 .95

avg. 23 | .46 59| .25 | .47 59| .36 | .65 .77| .56 |.73 .86

std. dev. A8 | .24 18 .17 | .23 .17 .19 | .11 .09 .25 |.13 .08

18.1,2( .25 | .71 77| .22 | .69 .76 .46 |.77 .84| .54 |.71 .84

30.3| .37 | .89 92| 53 |.89 .92| .47 | .83 .86| .44 |.89 .89

male 43.2* 10| .46 .66 .08 | .46 .60 A2 .57 .79 26| .51 .71

5142\ .00 | .80 .90| .00 |.80 .90 11| .70 .80 15| .70 .85

avg. A3 | .72 81y .17 | .71 .79 .18 |.72 82| .14 |.70 .82

std. dev. 22 | .19 12 27 | .19 15| .34 | .11 04| .40 |.15 .08

all avg. 27 |60 .71 .26 | .61 .72 .28 |.70 81| .30 |.69 .81

std. dev. 22 | .23 A7) 21 | .22 .17y .27 |.12 .07} .32 |.13 .08

TableB.1: Measuref agreemenfor eachcomputationameasureacrosseachlight verb andLevin

class.Obseredagreemenis measuredby = andweightedobseredagreemenby
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Linearly WeightedKappa and AgreementScores- WordNet Classes

Light Verb Class PMI LVC-PMI LVC-Prob LVC-Freq

18.1,2|| 42| .63 .79 45| .66 .79 .69| .86 90| .54 | .74 .81

303 .63|.89 94| 51|.89 93| .31|.77 .83| .34 | .71 .79
take 43.2) 53| .86 91| .48|.81 .90 .37|.83 .89| .19 |.77 .84
514.2| .71 | .80 .87 .65|.77 84| 61|.71 .83| .62 |.74 .83

avg. || .57 .79 88| 52|.78 .86| .50|.79 .86| .42 |.74 .82
std.dev. || .13| .12 .07 .09|.10 .06 .19|.06 .04 .19 | .02 .02

18.1,2|| 42| .54 73] .39|.51 .70} .48| .60 .79 .38 | .54 .73

303| 44 |.71 81| 45| .74 81| .27 | .66 .76 02| .54 .64
give 43.2) 43| .60 77| 52| .66 .81 .37|.69 .80| .19 |.57 .70
51.4.2| .09| .43 63| .11| .43 .63| 55|.74 87| .32 | .60 .79

avg. || .35| .57 .74 .36|.59 .74 42| .67 .80| .22 |.56 .71
std.dev. || .17 | .12 .08 | .18 | .14 .09 .12| .06 .05| .18 | .03 .06

18.1,2|| 46| .77 .86 .41|.77 .83| .31| .66 .79 .27 | .66 .76

303 .29 .80 .86 .11 .77 80| .14| .66 .70| .27 | .66 .69
male 43.2) .05 .51 71| .17| .63 .77 .12 | .57 .71 .17 | .57 .71
514.2| .24| .63 .76| .19| 60 .70 31| .66 .77| .36 | .66 .77

avg. || .26 | .68 80| .22 | .69 .78 .22 | .64 .74| .27 | .64 .73
std.dev. || .17 | .13 .07 .13|.09 .06 .10| .04 .04| .08 | .04 .04

all avg. || .39 .70 82| .39|.71 .81} .36|.70 .80| .30 |.65 .75

std.dev. || .18 | .13 .08 || .17| .11 .07 .17|.09 .06| .18 | .08 .06

TableB.2: Measure®f agreementor eachcomputationameasureacrosseachlight verbandWordNet

class.Obseredagreemenis measuredby  andweightedobseredagreemenby



Appendix C

Using Googleasa Corpus

In Sectiond.3.1theissueswith usingwebdataasa corpus—speci callywebdataindexedby
andaccessethrougha general-purpossearchengine—araletailed. Theseissuesncludethe
ceilingonresultsreturnedwhichis appliedby mostsearctenginesalongwith issuef noise,
both to intrinsic to the corpus(e.g., ungrammaticatext, typographicerrors)and dueto the
limitationsof the searchinterface(e.qg.,resultswith internalpunctuationnon-L\VC usagesand
soon.). However, thereare furtherissuesmore closelyassociateavith our particularchoice
of searchengine,andin this appendix,we explore the concernsrelatedto using Googlein

linguistic research.

Changesto the corpus Shortly after the dataneededor our measurementaas gathered,
Googledramaticallyincreasedhe sizeof its index, from 5.6 to 8 billion pages.The Google
index is updatedoften asnew datais madeavailable,but it is not often sucha large increase
in sizeis obsened. This highlightswhatis simultaneouslyan advantageanddisadwantageof
using searchengines:while the size of the corpusavailableto this experimenthasdoubled
with no costto theresearchehadwe beengatheringnformationat thetime of the shiftin the
index, the numberswvould have beeninconsistent.The existing datawould have to have been
thrown out, andnew informationgathered.This changen the Googlecorpusalsohighlights

theimportancewhenusingsearchenginedataasa corpus,of gatheringdataover a shorttime
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period:if the corpuschangesigni cantly, frequenyg countswill notbecomparableThedata
requiredfor themeasuregpresentedh thisthesiswasgatheredn a ve-weekperiodbeginning
in October2004,andthe numberof resultsfoundfor our baselinesearch(the) did notchange

duringthistime period.

Accessingthe corpus A primaryconcernwith usingthe dataavailablein a searchengineas
acorpusis thattheinterfaceemployedto accesshis corpus(eitherthroughthe public web, or
throughamoreprivateAPI) is subjectto change Thisissueis highlightedby Googles support
of wildcards: asthis documentwasbeing preparedGoogledroppedsupportfor this search
operatoyonly to resumesupporta few weekslater Wildcardshadbeenremovedtemporarily
from Googles searchinterfacein the past,andwhile they are now onceagainavailable, it
is neverthelesgisappointingo have sucha usefultool for corpusresearciremoved without

warning.

In ated counts Véronis(2005b)notesthatin early Januarythe numberof resultsreturned
by a Googlesearchrequestappearto have beensigni cantly overestimatedwhile furtherre-
searchshawsthatthis problemappeardo have been x ed(Véronis,2005a).Theseanomalous
resultsmaybeassociatedvith Googlesshiftto alargerindex (Véronis,2005c¢).It is dif cult to
applytheseobsenationsto our own data,asour measurementseregatheredeforeGoogles
increasdn index size. However, this countin ation appearso have beensystematicandnot
particularto any searchphrasein otherwords,if countswerein ated, they werein ated uni-
formly acrosssearchesBecauseof this, if countin ation did affect the datagatheredor the
measurepresentedn this thesis,it would not have affectedour results.Scoresof correlation

andagreementvould beidentical.

lwildcardsaresearchtermswhich matchfor oneword. For example,anexact-phrassearchor take a * walk
may returnlinks to pagescontainingthe phrasesake a shortwalk, take a long walk, andsoforth.
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