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Abstract 
 

The problem of translation from one programming language to another is not 

an easy one.  There are different approaches to achieving such a translation, 

including emulation, byte-code generation, and source translation.  Source 

translation from Scheme to Java has not been attempted before.  Here, an 

implementation of automatic source translation from functional Scheme to 

imperative Java is discussed.  This approach uses a Scheme-atomic model for 

translation, allowing it to be modular and extensible, as well as easy-to-

understand.  The results of this project, while not supporting the entire set of 

Scheme commands, are good.  Outputted Java code is functionally equivalent, 

if verbose.   
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Chapter 1 

 

Introduction 

 

All computer programs are written in one or more programming languages, 

used as a way of representing the low-level computer functions – functions 

such as “take the value in memory location 0h223, add it to the value in 

memory location 1h232, and store the result in memory location 0h220” – in a 

way that is convenient and easy for humans to understand. 

 

Obviously, different programming languages have different features and 

qualities.  Programming languages can be considered in terms of levels of 

abstraction, where a higher level of abstraction is closer to normal human 

language and a lower level is closer to actual circuit-level computer code.  The 

lowest level of abstraction is actual machine code, which is represented in 

binary and looks like this: “1010101011101100101”.  It is possible to write 

programs in machine code, but this requires a tremendous level of knowledge 

and is extremely difficult to do well, to debug, to maintain, and to understand.   

 

One level up is assembly-level languages, which are equivalent to the memory-

location example above and look like this: “mov eax, 0d000h”.   Assembly 

programming was typically employed because, with a competent programmer, 

the code could be extremely fast and optimized.  Still, however, this requires a 

lot of knowledge to develop and understand.   

 

Today most programming is not done in assembly languages, but in high-level 

languages.  Languages like C, C++, C#, Java, and Scheme are examples of 

such higher-level programming languages.  These languages allow more 

abstraction (either in terms of objects or functions) which in turn allows for 

programmers to develop software quickly, with more ease, and hopefully make 
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it easier to maintain and reuse.  High-level languages allow programmers to 

think more in terms of ideas, rather than how to implement those ideas on a 

specific hardware platform.  

 

However even at this high level, choosing a programming language for a task is 

not trivial.  Different programming languages make different fundamental 

assumptions about both the problem and the way in which it will be solved.  

These assumptions are called the programming language’s paradigm.   

 

For example, C++ and Java have an object-oriented paradigm, where all the 

code in a program is defined in terms of objects interacting with other objects.  

Here, you might see a line of code like 

“myCar.steeringWheel.turnToAvoid(shoppingCart)”.  Here, there is a myCar 

object, which has as part of it a steeringWheel object, upon which the operation 

“turnToAvoid” can be executed.  This operation has passed into it a 

shoppingCart object.  Presumably, the car object will turn to avoid the 

shopping cart. 

 

C has an imperative paradigm, where code to perform a similar function might 

look like “wheelPosition = updatePosition(-1.2)”.   Imperative programming is 

characterized by sequential operations (“do this and then do this”) and data 

assignment, such as in the previous example, where the variable 

“wheelPosition” is updated by the result of the “updatePosition” function.  In 

some ways, the imperative programming paradigm seems to be the most 

intuitive, as it corresponds to the vague impression that most people have that 

computers are just following a recipe, step by step by step.  In the imperative 

model, the steps are explicitly defined. 

 

Imperative and object-oriented paradigms are not the only models to be found, 

however.  Different programming paradigms include logic programming, as 

found in Prolog, and functional programming, used in Scheme.  There are 
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even more paradigms (and further being invented or discovered), but we will 

constrain ourselves here to these four main paradigms (object-oriented, 

imperative, logic, and functional).   

 

It is important to note a distinction here: C++ and Java are also imperative 

languages, but with an object-oriented paradigm included.  Scheme too can 

approximate an object-oriented paradigm, but is a functional language. 

 

Logic programming is where the programmer defines a series of facts about 

the universe and then queries the program on how those facts relate.  For 

instance, if I am a sibling to my brother, and my brother only has male 

siblings, it could be deduced that I am male.  Using logic programming, 

programs can easily made to make such logical deductions from a series of 

facts or assertions. 

 

Functional programming is a more mathematical approach to software 

development, one that emphasizes the evaluation of expressions rather than 

the execution of commands.  The regular variable updates seen in imperative 

and object-oriented paradigms (“x = 10”) are not allowed in a pure functional 

language.  As way of an example, consider code to add together the first ten 

whole numbers1.  In Java’s imperative/object-oriented model, the code might 

look like this: 

 

total = 0; 

for (i=1; i<=10; ++i){ 

total += i;  

}  

return total; 

Figure 1.1: Adding The First Ten Integers in Java 

 

 
1 Example from http://www.cs.nott.ac.uk/~gmh//faq.html#functional-languages 
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In Scheme’s functional model, equivalent code looks like this: 

 

(define sum 

   (lambda (from total) 

       (if (= 0 from) 

           total 

           (sum (- from 1) (+ total from))))) 

 

(sum 10 0) 

Figure 1.2: Adding The First Ten Integers in Scheme 

 

Notice the differences: in Java, the value of a variable is repeatedly updated, 

while in Scheme, a function calls itself again and again until finishing. 

 

Often, code that can be expressed in the functional model can be expressed in 

the imperative or object-oriented model, and vice-versa.  That is what this 

project is about. 

 

Scheme2Java is an attempt to automate translation from the object-oriented 

and imperative model of Java to the functional model of Scheme.  Given 

Scheme source code as input, the program outputs functionally equivalent 

(code that does the same thing and gives the same results) Java source.  

 

1.1 Problem 

 

Translation is not an easy process.  Computer translators for human languages 

still provide often-humourous output because human languages, despite their 

well-defined grammar, often have quirks in use that are difficult to capture in a 

computer program.   
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The advantage programming languages have in the translation problem is that 

they are well-defined and consistent – there is such a thing as incorrect 

computer code that does not make sense, much more than in spoken 

languages.  Knowing this, then, shouldn’t translation between two 

programming languages be easy, even trivial? 

 

What makes translation from Scheme to Java non-trivial (in fact, quite difficult) 

is the fact that they employ different paradigms.  To continue the comparison 

to human languages: this translation can be thought of not as translating from 

one similar human language to another, such as moving from English to 

French, but rather as automatically translating American Sign Language to 

Russian: two languages that make different fundamental assumptions about 

the world. 

 

The rationale for such a translation lies in the very paradigm difference that 

makes translation difficult.  The problem with different programming 

paradigms is that translation between them is difficult.  If development of a 

program is begun in Scheme and later the decision is made to move to Java, 

there is no way to convert the source code, besides having a developer familiar 

with both languages do the translation by hand.  There are other options 

besides the source-code conversion I’ve chosen (wrapping, emulation, and byte-

code generation are some of the competing options listed in Appendix A), but I 

have found no reference in my research to any attempts at source-level 

conversion. 

 

1.2 Motivation 

 

The motivation for my project includes not only the practical case of translation 

when the choice of which language to use has been changed (an admittedly 

infrequent occurrence), but also: 
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• illustrating the difference in the content and design of functionally-

equivalent source between the two languages; 

• as a proof of concept, proving that such things can be done; 

• doing something productive that has not been done before; 

• learning more about the workings of the two languages. 

 

The advantages of source-level conversion are many, and include being able to 

view the source and compare differences in output, being able to take 

advantage of Java-specific language features that are not mapped in Scheme 

before compiling, etc.  Other approaches in conversion attempt to emulate this 

advantage by extending the Scheme language with program-specific 

extensions, a much more limited approach.   

 

Since the program will be compiled into bytecode and run by the native Java 

software, any optimisations that apply to a regular Java programs also apply to 

the converted-from-Scheme Java source. 

 

1.3 Goals 

 

The goal of the project is to have functionally-equivalent source conversion 

from Scheme to Java.  Realistically, there is no way the complete Scheme 

specification, which runs fifty-pages long2, could be handled in what is 

considered a one-semester project.  My goal for this project is translation of the 

most-useful and frequently-used Scheme commands.  The project uses a 

Scheme-atomic model for source conversion, wherein basic Scheme constructs 

are translated and used as building blocks in the translation of an entire 

program.  I believe this approach will be used to generate valid output, but it 

may be that multiple passes will be necessary.  Syntactic validation of the 

 
2 “Revised5 Report on the Algorithmic Language Scheme”, edited by Richard Kelsey, William Clinger, and 

Jonathan Rees , at http://www.schemers.org/Documents/Standards/R5RS/HTML/ 
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outputted source is done using Java’s own javac compiler, while functional 

validation is accomplished by actually comparing the output of the both 

versions (Scheme and Java) of a translated program, and by examining the 

source.  

 

Knowing that there is no way that I can fully complete this project myself has 

implied some further goals on the project: the program I produce should be 

easy-to-understand, modular, object-oriented, stable, well-documented, and 

learning from the source be simple. 

 

1.4 Expected Contributions 

 

What follows is a list of contributions I expected would be necessary to achieve 

the goal of a functionally-equivalent source Scheme to Java translation, and 

my comments on those contributions: 

 • choosing the translation model 

  A Scheme-atomic model was chosen, as discussed. 

 • translating the most useful and interesting Scheme commands 

A list of these might include define, all the basic math commands, 

write, quote, lambda, set!, and as many primitives as possible 

 • implementing these translations in a Java framework 

 • writing various helper methods commonly used in Scheme translation 

 • designing the Java implementation to be easy, extensible, and fast 

A factory paradigm for the basic framework was chosen to allow 

the code to be easy-to-understand and extensible. 

 

The hardest part of this was expected to be the translation and the 

implementation of the translation. 
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1.5 Outline 

 

The rest of this report is organized as follows: 

 

Chapter 2 gives a background on Scheme to Java machine translation and 

reviews other relative work in the field. 

 

Chapter 3 discusses the overall approach to the translation problem, 

proceeding from a high level survey of the approach down to the specifics of its 

various aspects. 

 

Chapter 4 discusses the architecture of the implementation of the translation.  

This again takes the expository approach of going from the top-down.  First a 

class diagram is presented, then details on helper objects, data types, and the 

philosophy taken towards error handling in the assignment.  Then the 

structure of the translation aspect of the program is explored: first the abstract 

base class, then down to the Framework, finally arriving at the low level of the 

Translation-object atoms. 

 

Chapter 5 shows how the results were verified, and includes a comparison of 

the output of various test cases in both their original Scheme form and their 

translated Java form. 

 

Chapter 6 concludes the report by summarizing the contributions made, 

comparing the results with previous work, suggesting areas for future 

improvement, and by giving a frank assessment of the results obtained. 
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Chapter 2 

 

Background and Related Work 

 

In this chapter, previous attempts at Scheme to Java translation are reviewed, 

by way of a survey of the field, and commented upon.  The competing efforts 

are reviewed in comparison to the translation approach I’ve chosen. 

 

2.1 Options in Scheme Translation 

 

Translation between Scheme and Java is not a new field, and has been 

accomplished before.  However, my project is the first to translate source to 

source.  Other translation projects have relied on two different techniques.  

These techniques are: 

 • running Scheme source in a Java-based Scheme emulation 

environment 

 • converting the Scheme source to directly to Java bytecode (the 

approach taken by the software package “Kawa” 3 alone) 

 

The first option is uninteresting and don’t really solve the problem of 

translation.  Rather than actually converting the Scheme source, this solution 

just creates an environment where the Scheme source can run unmodified.  

This is not translation, but rather emulation. The Scheme source is not 

converted, but placed in an environment where it can run unaltered. 

 

Kawa’s conversion is more interesting.  Rather than converting source-to-

source, as I do, Kawa converts the scheme into internal “Expression” object, 

which it then compiles into Java bytecode.  Java bytecode is the lowest form of 

Java code; it is similar to the machine-language ones and zeros discussed 



 

 10 

before.  The advantage of Java bytecode is that it is designed to be platform 

independent, to run on any machine for which a Java Virtual Machine has 

been developed.   When one wants to run Java source code (like what my 

program outputs), they compile it into Java bytecode. 

 

What this means is that Kawa straddles the boundaries between emulation and 

source-to-source conversion.  The source is transformed, but in a way that it 

can be emulated by the Java virtual machine.  There are advantages and 

disadvantages to this approach. 

 

The advantages of directly-generated bytecode seem to me to be small: you can 

input Scheme code and have Java execution on-the-fly without resorting to the 

file system; but with this gain you lose the clarity of being able to see the 

generated Java source.  While my batch translation would lose the interactivity 

of a live Scheme interface, any queries one might want could be added to the 

Scheme source before conversion or manually to the Java source, after 

conversion.  The interactivity of a Scheme environment could also be emulated 

(unfortunately, with a performance hit) by invisibly regenerating the source and 

executing again. 

 

The advantages of a translator, for my purposes, outweigh any losses: these 

advantages include being able to view the source and compare differences in 

output, being able to take advantage of Java-specific language features that are 

not mapped in Scheme before compiling, etc.  Other approaches in conversion 

attempt to emulate this advantage by extending the Scheme language with 

program-specific extensions, a much more limited approach.   

 

Since the program will be compiled into bytecode and run by the native Java 

software, any optimisations that apply to a regular Java programs also apply to 

 
3 Kawa can be found online at http://www.gnu.org/software/kawa/, and is described in Appendix A. 
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the converted-from-Scheme Java source, an advantage the generated-bytecode 

of Kawa lacks. 

 

A selected listing of competing Scheme translation efforts is found in Appendix 

A. 
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Chapter 3 

 

Approach 

 

In this chapter the approach I’ve chosen to Scheme translation, at a high level, 

is explored and justified.   This explains the “philosophy and science” behind 

the translation of Scheme code in the software. 

 

3.1 Overall Survey 

 

The translation approach, at a high level, involves translating individual 

scheme command atomically - that is to say, independently.  So, the 

programming to translate “define” is separate, and in a different object, from 

the programming to translate “lambda”.   

 

The management of these translation atoms is handled the 

Scheme2JavaFramework, which roughly follows the “Factory” pattern4.  This 

pattern allows the Framework to act like a dispatcher, identifying the Scheme 

code to be translated, creating the appropriate Translation object, and letting it 

do the work.  When the object finishes, the Framework returns the result to the 

object that originally requested it. 

  

The Framework is an object that can be created by a user interface, either a 

command-line interface (implemented as Scheme2JavaCLI) or as a GUI 

(unimplemented).  Once created, one calls its method translate().  This method 

causes the Framework to enter a translation cycle, which, abstractly, is as 

follows: 

 

 
4 A nice definition of the Factor pattern and some exploration of its advantages can be found at 

http://gsraj.tripod.com/design/creational/factory/factory.html 
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 while there is still input code left to translate 

  select the next segment of bracketed code 

  identify which Scheme command is contained in the segment 

  create the appropriate Translation object for that command 

  call that object’s translate() function 

 end while 

Figure 3.1: The Abstract Design Of The Framework’s Translate Method 

 

Translation is entirely recursive. 

 

There are two kinds of translation objects.  The first, the Framework, simply 

identifies the command to be translated, creates the appropriate object, and 

returns the result of that object’s translation work.  The second kind of 

translation object is that which is created by the first: the objects that do the 

actual translation.  There are many examples of such objects: plus, minus, 

define, lambda, etc, but there is only one Framework object.  This does not 

mean, however, that the Framework is static.  Many Frameworks may be 

created during the translation process.  Consider: 

 

Any created object may find another Scheme command within it – for example, 

(+ 2 3) could just as easily be (+ 2 (+ 4 5)).  When such code is discovered, the 

object doing the translation recognizes that it doesn’t know how to handle this 

code, and instead creates a new Framework object, giving it the segment to be 

translated.  The Framework identifies the code, creates the proper object to 

translate it, and waits.  Once the translation is complete, the resulting Scheme 

code, as well as some information about its properties, is returned by the 

Framework to the object that requested the translation initially.  The object can 

then continue with its translation. 
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As an example, recursion for (+ 2 (- 3 4) (* 4 5)) would look, schematically, like 

this: 

 

 framework: translating “(+ 2 (- 3 4) (* 4 5))” 

 framework: this is the “plus” command, creating a plus object to  

translate this code. 

 plus translator: translating “(+ 2 (- 3 4) (* 4 5))” 

 plus translator: found another scheme command “(- 3 4) (* 4 5)”,  

sending it to translate 

 framework2: translating “(- 3 4) (* 4 5)” 

framework2: translating first part, “(- 3 4)” 

framework2: this is a “minus” command, creating a minus object to  

translate this code. 

 minus translator: translating “(- 3 4)” 

minus translator: returning result 

framework2: got result for “(- 3 4)”, now translating “(* 4 5)” 

framework2: this is a “times” command, creating a times object to  

translate this code. 

 times translator: translating “(* 4 5)” 

times translator: returning result 

framework2: got result for both “(- 3 4) (* 4 5)”, returning it to the  

plus translator that requested it originally 

plus translator: got result, using it to finish my translation. 

plus translator: returning result of “(+ 2 (- 3 4) (* 4 5))” to base translator  

that requested it originally 

framework: got result, translation finished. 

 

Figure 3.2: Schematic Translation of “(+ 2 (- 3 4) (* 4 5))” 
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Notice how there are two instances of the Framework: the one that began 

translation on the entire chunk of code, and the one that was created by the 

plus translator to translate some code that it didn’t know how to deal with.  

 

As you can imagine, many Framework objects get created during the 

translation process.  They all behave identically, identifying the code chunk, 

passing it off to be translated, and returning the result.    

 

The reason there is not one static Framework handing all translations is that 

there is a lot of information that must be stored about the translation and its 

results: what variables were used, how much code was translated, which 

functions were created and which were referenced, etc.  It is easier and more 

intuitive if there is one Framework handling the identification and translation 

dispatch for each unknown Scheme command. 

 

The advantages of this “factory”-model system of the Framework and creating 

translations objects are: 

 • code is separated in a way that is intuitive and logical 

 • code that handles one element of Scheme translation (adding numbers) 

need not worry about other elements (defining functions) 

 • new translation objects can be added simply by creating the translation 

code and adding an identifying reference to the Framework, allowing flexibility 

and scalability 

 • any problems in code can be localized to the object they are occurring 

in, as a problem in lambda translation could only be the fault of the lambda 

translator. 

 

The disadvantage is that code may be duplicated between translation objects, 

as many of these objects may perform similar tasks in the translation.  

However, this is minimized by having all translation objects (including the 
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Framework) inherent from a base abstract Translator class, which defines 

many useful functions common to all translations. 

 

One wrinkle in the general translation process is that, before the first 

Framework translation method is called, the Scheme2JavaCLI (and 

presumably, the GUI and any other client of the Framework) invoke a 

preTranslate() method.  After the translation, a postTranslate() method is 

similarly invoked. 

 

The preTranslate() method does various transformations to the input code to 

make it easier to translate.  Tabs and extra spacing are removed, comments are 

stripped off, and some unsupported Scheme commands (like “cond”) are 

transformed into functionally-equivalent and supported scheme commands 

(like “if”).  This allows the translation to handle more Scheme atoms than it 

could otherwise do.  The preTranslate also does a basic syntax check on the 

Scheme source, ensuring that there are enough close brackets to match all the 

open brackets. 

 

The postTranslate() method performs some re-formatting (proper tabulation, 

semicolons, etc) to make the code syntactically correct, easier-to-read, and 

presentable.  It also applies the outer shell of the Java program, code which 

supports the translated scheme source.  

 

Notice how the Framework, in effect, generates a translation tree on-the-fly.  I 

had considered first creating a translation tree, representing the Scheme code, 

but the disadvantage to this is more overhead and rigidity.  The Framework 

follows a tree-recursion down through the Scheme code, but does not formalize 

it in a data structure, allowing different approaches to be taken.  For instance, 

a specific Scheme translation object could, upon returning, tell the Framework 
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to go back or forward an arbitrary number of characters.  While this 

functionality wasn’t used in this project, it’s nice to have there.  

 

This is the general approach to translation.  What follows are specifics in the 

implementation. 
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Chapter 4 

 

Architecture 
 

This chapter explores the lower level architecture for the program.  Details 

such as a class diagram, helper objects, data types, and error handling are 

discussed.  An exploration of translation, along with examples of translating 

specific commands, is presented. 

 

4.1 Class Diagram 

 

As the actual translation of Scheme commands is done by specialized objects, a 

hierarchy is needed in order to use code efficiently.  What follows (on a 

separate page, due to its size) is a class diagram for Scheme2Java: 
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Figure 4.1: Class Diagram for Scheme2Java 

 

4.2 Helpful Objects 

In the development of the structure of Scheme2Java¸ various objects were 

designed to make the translation process easier.  What follows is a description 

of some of them and their justification. 
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4.2.1 The SearchString Wrapper 

 

Early in the development process, it because obvious that most of the 

translation would be done with manipulations to String objects.  The plan was 

to make a new subclass of String, one that would have various Scheme-specific 

string-manipulation functions included.  Unfortunately, for reasons that are 

unclear, Java defines String as a final class – no subclasses are allowed.   

 

For this reason, SearchString is a transparent wrapper class for String.  It 

contains a public-accessible String, called str, as well as several public 

functions that allow manipulations on the String str.  These functions are low-

level, straightforward, and are for the most part uninteresting, but a brief 

listing should give you a flavour of the type of things that are possible with 

SearchStrings: 

 

 public int getPosOf(String toFind); 

public int getPosOfNextWhitespaceChar(int start); 

public int getPosOfNextNonWhitespaceChar(int start); 

public int getPosOfPartnerBracket(int start); 

public String getStringBetweenPositions(int start, int finish); 

public StringInt getNextWord(int start); 

Figure 4.2: Selected listing of SearchString functions 

 

4.2.2 The StringInt Data Type 

 

StringInt is designed as a basic class containing a public String and int, used in 

many of the string manipulation functions in SearchString to return both the 

result of the manipulation, as a String, and the position of that manipulation, 

as an int.  
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4.2.3 The TranslationResult Data Type 

 

TranslationResult is used to return the result of a translation.  It contains 

Strings representing the name of the returned variable (or function, if one is 

created in the translation process), the code, a Vector of the variables the code 

requires, and a boolean indicating whether or not the translated code 

represents a lambda. 

 

4.2.4 The Variable Data Type 

 

Variables is used to store the result of a variable binding.  It holds two strings, 

a name and a value.  Variables are stored in a static Vector in the Translator 

object, called “variables”, allowing any Translation object to see the recorded 

state of the Scheme environment, and modify it, at will.  There are helper 

methods in Translator for this. 

 

 

4.3 Data Types  

 

One difficulty in translating Scheme code to Java is variable typing.  Java has 

strict typing, requiring each variable to specifically announce what type of 

information it represents.  Scheme on the other hand is more lose, allowing one 

to define a number as, say “1701”, and not having to worry whether or not that 

number is an integer, long, float, or any other sort of numbered data type. 

 

Translating from a loosely typed language to one with strict typing therefore 

presents a challenge.  How does one determine what type of data “1701” is?  

One option is to look at all the ways in which the number is used, and from 

that deduce the data type that is required.   
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The downside with this option is that you must, in essence, interpret the 

Scheme code before you translate it, running through its execution to figure 

out how the number is used.  Not only is this costly, it’s difficult to do, and the 

Scheme code may be executed in a way your interpreter does not predict.  This 

option was therefore rejected. 

 

The option I settled upon was to, in effect, avoid this problem of determining 

variable type altogether by not deciding what type a variable is until the 

question becomes pertinent.   That is, variables would be defined as Strings in 

the Java source code, the most malleable and castable data type available. 

Only when the code required numbers to be added or divided would I convert, 

on the fly, to a numbered data type. 

 

Code would look like this: 

 

String var1 = “2”; 

String var2 = “3”; 

String var3 = (Integer)var1.intValue() + (Integer)var2.intValue(); 

Figure 4.3.1: Translated Scheme Code, Casting As Required 

 

Notice how the variables are cast on-the-fly to what is required. 

 

The downside is that, besides making the code ugly, it required a lot of nested 

casts when translating equals.  Plus, you were limited to what you could cast 

String to, and it made the code exception-prone.  As a solution, I decided that 

all variables would be cast to SVars (short for “Scheme Variables”), a data type 

containing a String and including methods to cast to doubles, which are the 

numeric data type with the most precision. Code now looks like 

 

SVar var1 = new SVar(“2”); 

SVar var2 = new SVar(“3”); 
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SVar var3 = new SVar(var1.toDouble() + var2.toDouble()); 

Figure 4.3.2: Translated Scheme Code, Using Functions 

 

The downside to this approach is that a toDouble() method must be included in 

the SVar, but this is not too bad.  I had considered writing add(), subtract(), 

multiply(), etc methods to the SVar, but the downside to this is that a method 

must be written for every combination of numbers: add(x), add(x, y), add(x, y, 

z), etc, to infinity.   This would result in somewhat clearer code, but the cost of 

such a tradeoff was too high, even if the SVar object, included in all translated 

Scheme output, can have extra methods added or removed easily.   

 

This is still ugly code though.  I had considered using add()-style functions 

when the program knew that they were supported for that number of 

arguments, and falling back to the toDouble()-style when they weren’t, but this 

would be two different styles for no functional reason.  The two do behave 

slightly differently, and this could end up being trouble down the road.  For 

this reason I stuck with toDouble()-style casting. 

 

Had I chosen to convert the Scheme source to C++, operator overloading would 

have been a good option to use with the Svars.  I could have had code like 

“SVar res = var1 + var2;”, where var1 and var2 are both Svars.  Alas, operator 

overloading is disallowed in Java.  Hindsight is 20/20.   

 

4.4 Error Handling 

 

All of the functions in a SearchString (and indeed, in the Scheme2Java 

program) are designed to return null if there is an error in input, or the 

function cannot do what is requested of it.  This was an architectural decision, 

and its motivation is as follows.   
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Returning a blank string (“”) may be indistinguishable from correct output, so 

that is not a good idea.  Throwing a user exception would allow one to provide 

more details on the error and the situation in which it occurred, but this, to be 

useful, requires exception handling at all levels of the application.  Since 

SearchStrings are used throughout Scheme2Java, it would be a bad idea to 

have every Translator subclass know how to handle an OutOfBound exception, 

as distinct from an InvalidInput exception, different from an OutOfInput 

exception.  The other option is to handle exceptions at the base level of the 

program – which is in fact what happens. 

 

Returning null when something else is expected will cause an exception – a 

NullPointerException.  The base class handles this exception, printing out what 

happened and the circumstances in which it happened.  This, combined with 

the logging that is written to the file and the screen, is enough to determine the 

place and circumstances in which the error occurred.  So rather than worrying 

and creating specific Exception classes for each error that can occur, we return 

“null” and trust that the exception that causes will be enough to determine 

where the error took place. 

 

A final advantage with returning null to indicate errors is that it is easily 

checked for and coded in Java, when compared with the more awkward 

try/catch structure that is required for exceptions.  This allows Translators to 

work with the nulls they expect, using them to indicate when, for instance, the 

end of the input code has been reached. 

 

Of course, this does have the disadvantage of flattening the error structure, so 

that an “end of input” null is indistinguishable from a “error in input” null – 

but if there is an error in input the translation will not succeed anyway, so this 

disadvantage is acceptable. 
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In the case of serious errors, where there is no way to gracefully recover and 

the translation has no chance of succeeding, the program exits with an error 

message at the point when the fault is discovered, and emphasizes that it is 

terminating irregularly. 

 

4.5 Base Class 

 

The base class is an abstract Translator object.  This class contains methods 

and properties that are common to all objects that will be doing Scheme to 

Java translation.   It is abstract, which means that it cannot be created 

directly, but other object can inherent from it.  This allows it to define methods 

that must be included in all translation objects, controlling their design.  It also 

allows it to provide useful methods and properties that anyone translating 

would find useful.  For instance, all translators need to keep track of: 

 • their input code 

this is stored as SearchString inCode 

 • their output code 

this is stored as String outCode 

• what variables they’ve used, and what functions and lambdas they’ve 

referenced 

these are stored as Vectors requiredVariables, functionList, and  

lambdaList 

 • the Scheme environment 

  this is stored as the static Vector variables 

Also, all translators need to know how to 

 • translate source code (obviously) 

  -the abstract method translate defines this 

 • log their actions to the screen and log file 

  -the method log(String s) does this.  Child objects are expected to  
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override this function with one that prepends their name to the 

string being logged, so “created” becomes “define: created.” 

There also some helper functions, like  

 • a function to format their list of variables as a Java function signature 

• etc.  

 

This abstract Translator base class does include one private static variable, a 

number simply called “num”, that can only be accessed through protected 

methods.  “num” is used to name variables and functions in a way that is 

unique.  Each access of the value of “num” increases it by one, so that when a 

translator wants to name a variable, it need only place getnum() as a variable 

name to be ensured of uniqueness.  Additionally, it holds a static “errorCount” 

number and “lastError” string, used for counting and keeping track of non-

critical errors that may be encountered in the translation process.  This isn’t 

used much in the present software (few translation errors are non-critical), but 

one example of its use occurs when the depth of a variable in the Scheme code 

cannot be determined, for whatever reason.   

  

4.6 Beginning the Translation 

 

Translation is begun using Scheme2JavaCLI, the command-line interface (CLI) 

for the Scheme2Java Translator.  It is a wrapper for the 

Scheme2JavaTranslator object, allowing easy access to translation.   

 

When invoked at the command line, it retrieves and feeds the 

Scheme2JavaTranslator object input code, runs its preTranslate() method, then 

its translate() method, and finally its postTranslate() method.   It then saves the 

output to the specified file.   
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The Scheme2JavaTranslator is encapsulated in this way to allow multiple uses 

of the same translation functionality.  This access could be done through the 

CLI (as implemented), invisibly as part of a larger program, or through a GUI. 

 

Scheme2JavaCLI is used at the command-line as follows: 

Scheme2JavaCLI [inputfile] [classname] [logging level] [javac path] 

 

Inputfile is the filename of the Scheme source one wants translated. 

Classname is the class name for the outputted Java source. 

Logginglevel is either ‘1’, ‘2’, or ‘3’, and controls the amount of data that is 

written to the console as the translation proceeds.  For most translation ‘2’ is 

all that is required to get a feel of the recursion going on, but to see everything 

that is happening, ‘3’ is required.   

 

If options are specified incorrectly, the correct usage is printed to the console 

and the program exits.  There is more detailed information on usage in 

Appendix C. 

 

4.7 Translating the Source 

 

The Scheme2JavaTranslator, as specified before, has methods to preTranslate, 

translate() and postTranslate().   

 

The translate() method uses SearchStrings to determine what the first 

command in the passed Scheme is.  It then creates the appropriate translator, 

passes it off the code, and waits for it to return.  If there are more commands 

left to translate, it translates them similarly. 
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This becomes recursive, as the created Translator object may well encounter 

further Scheme code to be translated.  This is passed off to a new 

Scheme2JavaTranslator object, as explained above. 

 

The Scheme2JavaTranslator currently recognizes the following commands: 

/ 

+ 

- 

* 

= 

< 

> 

<= 

>= 

modulo 

abs 

round 

and 

or 

not 

remainder 

write 

quote 

newline 

if 

lambda 

define 

set! 

Figure 4.7: Listing of Supported Commands 
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…as well as any other previously-translated functions.  For instance, if 

you define a function “divide-by-two”, code like “(divide-by-two 10)” will be 

translated properly. 

 

If the command is not recognized, the Translator will create an unrecognized 

object, which does a best-case translation of simply assigning the code, 

untranslated, to a variable.  The reason it does this instead of returning an 

error is that this is more optimistic, as it sometimes works for translating 

Scheme constructs that haven’t been specifically programmed for.   Numbers 

were originally translated this way, but a primitive object was created for them.  

The two classes (unrecognized and primitive) do essentially the same 

translation, but primitive translates #t and #f correctly. 

 

4.8 Translating Specific Commands 

 

Details on selected Translator classes follow.  Not all are included, but those 

with interesting features or properties have those explored.   

 

4.8.1 primitive 

 

The class primitive is the simplest translation possible.  primitive is used when 

the Scheme code to be translated is one of the base units: usually, a number.  

For instance (+ 2 3) gets broken down into +, 2, and 3.  2 and 3 get translated 

by this code, which simply puts the numbers into SVars and returns them.  2 

gets translated into SVar var1 = new SVar(“2”); 

 

4.8.2 ifStatement 

 A scheme “if” structure has 3 parts: the test, the consequent, and the 

alternate.  The test is what controls execution through the if block, the 
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consequent is what happens if the test results in a true statement, and the 

optional alternate is what should happen otherwise. 

 

 To translate this, the ifStatement object parses out the scheme code for 

the test, consequent, and if it is there, the alternate.  It then sends these 

chunks of Scheme code to be translated (using a new Scheme2JavaTranslator) 

and formats the results in a simple Java “if” block. 

 

 The code for this is simple, and that’s why this class was chosen as the 

first example.  All of the real translation is done recursively by whatever objects 

are responsible for the code contained in the Scheme chunks.  ifStatement 

shows the power of translating recursively: now matter what test is done in the 

if statement, all the ifStatement object has to worry about is putting the result 

in the proper Java structure. 

 

4.8.3 math 

 

math is used very often, as most Scheme code (indeed, most computer code) 

has some sort of high-level numerical aspect to it.  math handles basic 

mathematical operations such as +, -, etc.  To do this, it first identifies what 

the operation of the code is.  If the operation is one that requires slightly 

different formatting, this is noted.  For instance, abs, not, or and or round all 

require the operation to be a function in Java (“Math.round(x)”) while other 

operations like + or * only require that they be put between operands (“x + y”).   

 

Four vectors are then created.  One stores the list of variables, one the code, 

one the list of required variables, and one with a list of functions.  These 

vectors are required for recursion: if the Scheme code contains sub-chunks 

that require translation, the outer chunks must know what variables need to 

be passed in.  These variables, function names, and code listings are stored in 
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these Vectors until they are required.  For example, a variable might not be 

used until 5 or 6 layers deep in the Scheme code: in the resulting Java code 

this variable must be passed along to the correct function.  This will become 

more clear with an example; if you wish, flip to Appendix B now to see how 

this takes place. 

 

Once the recursion is complete, the top-level of the code is transformed.  This 

transformation is simple, but does depend on the results of the recursion.  

Depending on the complexity of the code, the recursion may have returned 

either a variable or a function.  In the variable case, the transformation turns 

“(+ x y)” into “x.add(y)”.  In the function case, the transformation turns “(+ x (+ 

2 3))” to “x.add(function1())”, where function1 adds 2 to 3.  Here we use the 

Vectors we populated during the recursion to ensure that the output code is 

correct and contains everything we need it to. 

 

Again, like ifStatement, the actual code is pretty straightforward.  About half 

the code handles the recursion, the other half handles the transformation of 

the results of the recursion. 

 

4.8.4 lambda 

 

lambda is a special case because it is a more difficult translation.  lambdas in 

Scheme represent a function, and there is no simple mapping from a function 

in Scheme to some construct in Java.  I had several options: 

 • I could have implemented lambdas as separate classes.  The downside 

to this is that there may be a lot of classes, plus, this is a lot of overhead.  It 

also makes passing lambdas into functions more difficult.  If I had elected to 

translated into C++ instead of Java, this would be easier, as there are ways to 

pass functions as arguments in C++.  It is not so in Java. 
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 • I could have implemented lambdas as anonymous classes.  This would 

have been good and I was leaning towards this option for a while, but the 

downside is that handling recursion in the Scheme code would be very difficult, 

plus, there are many restrictions on anonymous classes in Java. 

 • I could have pre-translated the Scheme input to remove lambdas and 

replace them with named expressions. This would solve the problem but would 

likely have been difficult, especially with regards to recursion.  Besides, this is 

a cheap solution in that it solves the interesting problem of lambda translation 

by removing it completely. This would have been my last-resort option, had I 

not figured out how to implement lambdas as named classes. 

 

To implement lambdas as named classes, each lambda would be represented 

as a class – in the same source file - with various methods and arguments.  

The downside to this technique is that defining the form for the class appeared 

to be difficult.  I decided on having an execute(a, b, c, … n) method.  Each class 

contains the variables it requires, enough to represent the environment it was 

created it.  The downside to this is that I had to code for recognizing lambda-

objects elsewhere.  An almost-equivalent option was to turn the lambdas into 

objects with the same methods and attributes.  There was no real advantage to 

classes over objects, but I preferred the class translation as a matter of 

personal taste. 
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Chapter 5 

 

Validation, Verification, and Results 

 

This chapter explores how the output from the program was validated and 

verified, and also presents a frank appraisal of its output.  

 

5.1 Examining the Output 

 

The output of the program was verified using Java’s own compiler, Dr. Scheme, 

and my own knowledge of both languages.  The Scheme interpreter used was 

Dr. Scheme version 103p1, the Java compiler and interpreter was version 

1.4.1_01.  The java compiler checked that the output code was technically 

accurate; I checked that it was functionally-equivalent.  To do this I compared 

the output of the two programs to make sure that they were identical.  Identical 

output suggests that the programs are functionally-equivalent, as the same 

input results in the same output, but there is a chance that this could be a 

fluke.  Examination, by hand, of the Java source code was necessary to 

convince myself that the two versions of the code would behave the same in all 

circumstances.  This requires some knowledge of Java to be able to judge 

whether or not the output of the Scheme2Java translator is functionally-

equivalent, but there is no way to automate this.  Were this software released 

publicly, users would either have to take the leap of faith that the code is 

functionally-equivalent (they would have to trust the program and its 

developer(s)), or look at the outputted source themselves.  After each 

translation object was completed, it was robustly tested to ensure that it 

operated as expected and handled errors gracefully. 

 

Here is a table of various translations attempted (more detailed examples are 

included in Appendix B, all of them are included on the attached CD in 
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Appendix D) and the output from both versions (Scheme and Java) of the 

source code.  Along with the comparison of outputs, notice the line counts for 

both versions of the code.  This will be explored in section 5.2. 

 

Scheme Code (95.307 Assignment 1 # 1a): 

(define (f a b) 
 (/(+ (modulo a 2) 5)  (* 9 (abs b))) 
) 
(write (f 10 11)) 

Scheme 

Line 

Count 

Java Line 

Count 

Scheme 

Output 

Java Output Remarks 

4 46 5/99  

[= 0.05050…] 

0.05050… Java doesn’t keep 
track of fractions like 
Scheme does, so the 

result is 
automatically put 
into decimal form. 

Table 5.1.1: Output of Assignment 1 # 1a 

 

Scheme Code (95.307 Assignment 1 # 1b): 

(define (g a b c d x y ) 
 (and (or (= a b) c) (or (and d (not c)) (> x y))) 
) 
(write (g 1 2 #f #f 10 20)) 

Scheme 

Line 

Count 

Java Line 

Count 

Scheme 

Output 

Java Output Remarks 
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4 61 #f false This example uses a 
valid test case, but if 

another one were 
used that didn’t 
make sense (for 

instance, (g 1 2 3 4 5 
6)) the Scheme code 
wouldn’t run and the 
Java code would give 

incorrect output. 
Garbage in, garbage 

out. 

Table 5.1.2 – Output of Assignment 1 # 1b 

 

Scheme Code (95.307 Assignment 1 # 2): 

(define (inv x) 
 (/ 1 x) 
) 
(define (totalResistence r1 r2) 
 (inv(+ (inv r1) (inv r2) )) 
)  
(write (totalResistence 10 100)) 
 

Scheme 

Line 

Count 

Java Line 

Count 

Scheme 

Output 

Java Output Remarks 

7 37 100/11 

[=9.090909…] 

9.09090909… The Java code also 
creates functions 

called 
“totalResistence” and 

“inv” in the 
translation, and calls 

them by name. 

Table 5.1.3 – Output of Assignment 1 # 2 

 

Scheme Code (variation on 95.307 Assignment 1 # 6): 

(define (allSame x y z) 
 (and (and (= x y) (= x z)) (= y z)) 
) 
(define (notAllSame x y z) 
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 (not (allSame x y z)) 
) 
(write (allSame 10 10 10)) 
(write (allDifferent 10 10 10)) 

Scheme 

Line 

Count 

Java Line 

Count 

Scheme 

Output 

Java Output Remarks 

8 64 true 

false 

 

true 

false 

Like the Scheme 
code, the Java code 
defines allDifferent 

as !(allSame). 

Table 5.1.4 – Output of Variation on Assignment 1 # 6 

 

Scheme Code (part of 95.307 Assignment 2 # 3): 

 
(define (len num) 
 ;returns the number of digits in the non-negative integer, 11 digits or  
less 
 (if (< num 10) 
  1 
  (if (< num 100) 
   2 
   (if (< num 1000) 
    3 
    (if (< num 10000) 
     4 
     (if (< num 100000) 
      5 
      (if (< num 1000000)    
    
       6 
       (if (< num 10000000) 
        7 
       (if (< num 100000000) 
        8 
       (if (< num 1000000000) 
        9 
       (if (< num 10000000000) 
        10 
        11 
       ) 
       ) 
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       ) 
       ) 
      ) 
     ) 
    ) 
   ) 
  ) 
 ) 
) 
(write (len 1000)) 

Scheme 

Line 

Count 

Java Line 

Count 

Scheme 

Output 

Java Output Remarks 

35 151 4 

 

4 The more verbose 
the Scheme code, 
the more verbose 

(comparatively) the 
Java code is. 

Table 5.1.5 – Output of Segment from Assignment 2 # 3 

 

Here is a table showing all the example cases on the attached CD, and 

comparing their output and line sizes pre- and post-translation.    Results are 

highlighted.  For more information on the examples, see the \Examples 

directory on the CD.  Line counts are slightly inflated here because testing is 

included – but again, these line counts should be taken as only a rough 

measurement of efficiency: any Scheme program could be written on one line, 

and quality of output cannot be measured by line counts alone.  These line 

counts are for standard formatting in both languages, unless otherwise noted.  

 

Filename Scheme 
Line 
Count 

Java 
Line 
Count 

Scheme 
Output 

Java 
Output 

AssignmentOneNumberOneA 25 73 "Test case 1:  
Testing 0 1 – 
expect 5/9" 

5/9 
 

"Test case 2:  
Testing 1 1 – 
expect 2/3" 

Test case 1: 
Testing 0 1 - 
expect 5/9 

0.555555555
5555556 

 
Test case 2: 
Testing 1 1 - 
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2/3 
 
 
 

"Test case 3:  
Testing 9999 

99999 – expect 
2/299997" 
2/299997 

 
 

"Test case 4:  
Testing 0 0 - 

expect division 
by 0" 

/: division by 
zero 

expect 2/3 
0.666666666
6666666 

 
Test case 3: 
Testing 9999 

99999 - expect 
2/299997 

6.666733334
000007E-6 

 
Test case 4: 
Testing 0 0 - 

expect division 
by 0 

Infinity 

AssignmentOneNumberOneB 22 88 "Test case 1:  
Testing 0 0 #f #f 
0 0 - expect f" 

#f 
 
 

"Test case 2:  
Testing 1 1 #f #t 
99 22 - expect t" 

#t 
 
 

"Test case 3:  
Testing bad 

input 4 5 2 3 #t 
#f - expect error" 

 
Condition value 
is neither true 
nor false: 2 

Test case 1: 
Testing 0 0 

false false 0 0 - 
expect f 
false 

 
Test case 2: 
Testing 1 1 
false true 99 
22 - expect t 

true 
 

Test case 3: 
Testing bad 
input 4 5 2 3 
true false - 
expect error 

false 

AssignmentOneNumberTwo 32 64 "Test case 1:  
Testing 10 10 - 

expect 5" 
5 
 

"Test case 2:  
Testing 1 1 - 
expect 1/2" 

1/2 
 

"Test case 3:  
Testing -1 -1 - 
expect -1/2" 

-1/2 
 

"Test case 4:  
Testing 0 0 - 

expect division 

Test case 1: 
Testing 10 10 - 

expect 5 
5.0 

 
Test case 2: 
Testing 1 1 - 
expect 1/2 

0.5 
 

Test case 3: 
Testing -1 -1 - 
expect -1/2 

-0.5 
 

Test case 4: 
Testing 0 0 - 

expect division 
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by 0" 
/: division by 

zero 

by 0 
0.0 

AssignmentOneNumberSix 30 72 "Test case:  
Testing 1 2 3 – 

expect #t" 
#t 
 

"Test case:  
Testing 1 1 2 – 

expect #f" 
#f 
 

"Test case:  
Testing 1 1 1 – 

expect #f" 
#f 

Test case: 
Testing 1 2 3 - 

expect true 
true 

 
Test case: 

Testing 1 1 2 - 
expect false 

false 
 

Test case: 
Testing 1 1 1 - 
expect false 

false 

AssignmentOneNumberSix 
Variation 

16 71 "Testing allSame 
10 10 10, 

expecting true" 
 
#t 
 

"Testing 
someDifferent 10 
10 10, expecting 

false" 
#f 

Testing 
allSame 10 10 
10, expecting 

true 
true 

 
Testing 

someDifferent 
10 10 10, 

expecting false 
false 

AssignmentTwoSnippets 42 153 "Testing length 
of 0, expecting 

1" 
1 

Testing length 
of 0, expecting 

1 
1 

neg 12 35 "Testing neg 10, 
expect -10" 

-10 
 

"Testing neg -10, 
expect 10" 

10 

Testing neg 10, 
expect -10 
-10.0 

 
Testing neg -
10, expect 10 

10.0 

genericFunction 9 54 " What is f using 
10 20? 

Expecting 2" 
2 

What is f using 
10 20? 

Expecting 2 
2.0 

largestWithIfStatement 25 56 "What is the 
largest of 10 and 
20?  Expecting 

20" 
20 
 

"What is the 
largest of -10 

and -20?  
Expecting -10" 

-10 

What is the 
largest of 10 

and 20? 
Expecting 20 

20 
 

What is the 
largest of -10 

and –20? 
Expecting -10 

-10 
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"What is the 

largest of 10 and 
2+20?  

Expecting 22" 
22 

 
What is the 
largest of 10 
and 2+20? 

Expecting 22 
22.0 

isEvenWithIfStatementAnd 
Functions 

53 104 "Testing if 132 is 
even" 
#t 
 

"Testing if 0 is 
even" 
#t 
 

"Testing if 11 is 
even" 
#f 
 

"Testing if -
99999 is even" 

#f 
 

"Testing halve-
or-zero 2, 

expecting back 
1" 
1 
 

"Testing halve-
or-zero 113, 

expecting back 
0" 
0 

Testing if 132 
is even 
true 

 
Testing if 0 is 

even 
true 

 
Testing if 11 is 

even 
false 

 
Testing if -

99999 is even 
false 

 
Testing halve-

or-zero 2, 
expecting back 

1 
1.0 

 
Testing halve-
or-zero 113, 

expecting back 
0 
0 

usingSetBang 15 42 "setting x to a 
constant, 

expecting x to be 
5" 
5 
 

"resetting setting 
x to a function, 
expecting x to be  

65" 
65 

setting x to a 
constant, 

expecting x to 
be 5 
5 
 

resetting 
setting x to a 

function, 
expecting x to 

be 65 
65.0 

transformingConds 24 65 "Which is larger, 
10 or 5?" 

10 
 

"Which is larger, 
10 or 15?" 

15 
 
 

Which is 
larger, 10 or 5? 

10 
 

Which is 
larger, 10 or 

15? 
15 
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"Which is larger, 
10 or 10?" 
"equal" 

Which is 
larger, 10 or 

10? 
equal 

deepRecursion 9 63 "testing with 10" 
-98 

testing with 10 
-98.0 

lambdaDouble 59  
 

[irregular 
formatting] 

46 
 

[regular 
formatting] 

“What is the 
result of 5 

passed into the 
lambda?” 

10 
 

“What is the 
result of -10 

passed into the 
lambda?” 

-20 

What is the 
result of 5 

passed into the 
lambda? 
10.0 

 
What is the 
result of -10 

passed into the 
lambda? 
-20.0 

defineVariableBinding 11 
 

[irregular 
formatting] 

30 
 

[regular 
formatting] 

 
"Calling function 

with value 3, 
expecting back 

6" 
6 

Calling 
function with 

value 3, 
expecting back 

6 
6.0 

lambdaWithVariables 38 61 "Global variable 
is: "3 

 
"Calling Lambda 
with 1 and 2, 

expecting back 1 
+ 2 + 3 = 6..." 
"Lambda is 

called" 
 

"Adding "1" and 
"2" and the 

global variable, 
"3 
 

"Result is "6 
"Returning: "6 

Global variable 
is: 3 

 
Calling 

Lambda with 1 
and 2, 

expecting back 
1 + 2 + 3 = 6... 

Lambda is 
called 

Adding 1 and 
2 and the 

global variable, 
3.0 

 
Result is 6.0 

Returning: 6.0 

lambdaWithSetVariablesError 45 72 "Global variable 
is: "3 

 
"Calling Lambda 
with 1 and 2, 

expecting back 1 
+ 2 + 3 = 6..." 
"Lambda is 

called" 
"Adding "1" and 

"2" and the 
global variable, 

"3 
 

Global variable 
is: 3 

 
Calling 

Lambda with 1 
and 2, 

expecting back 
1 + 2 + 3 = 6... 

Lambda is 
called 

Adding 1 and 
2 and the 

global variable, 
3.0 
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"Result is "6 

"Returning: "6 
 

"Setting 
globalvar to 10" 
"Now calling, 

expecting back 1 
+ 2 + 10 = 13" 
"Lambda is 

called" 
"Adding "1" and 

"2" and the 
global variable, 

"10 
 

"Result is "13 
"Returning: "13 

 
Result is 6.0 

Returning: 6.0 
 

Setting 
globalvar to 10 
Now calling, 

expecting back 
1 + 2 + 10 = 13 

Lambda is 
called 

Adding 1 and 
2 and the 

global variable, 
3.0 

 
Result is 6.0 

Returning: 6.0 

usingQuote 6 15 this_is_with_a_
quote 

this_is_with_ 
using_the_short

hand 
(+ 2 3) 

This_is_with_a
_quote 

This_is_with_
using_the_ 
shorthand 
(+ 2 3) 

Table 5.1.6 – Raw Output and Line Counts of All Testing 

 

5.2 Appraisal of Results 

 

The results are good.  The original goal of functionally-equivalent Scheme to 

Java source translation has been achieved at the level I wanted.  As a 

benchmark for the complexity of the Scheme code being translated, I have been 

using the Scheme assignments from 95.307, the course in which functional 

programming is taught at Carleton University.  Incidentally, this is also the 

reason for the choice and version of the Scheme interpreter employed.  My 

rationale in this was that these assignments should provide a good overview of 

the commonly-used constructs, and suggest a level of complexity appropriate 

for my project.  I have judged the value and completeness of this project in 

respect to the assignments of the course.  My goal was to translate the majority 

of assignment 1 – I feel this goal was met.  Translating assignment 2 would be 

nice, and some steps were made in that direction.  The holy grail of this project 

– a goal I did not expect to reach – would have been translation to Java of the 
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meta-circular interpreter implemented in assignment 3.  Scheme2Java can 

translate most of assignment 1 (see the disk for full conversions) and some of 

assignment 2, such as the helper functions in the Scheme objects.  However, the object-

oriented Scheme of assignment 2 does not translate fully, nor does the function-passing in 

assignment 1.  I consider Scheme2Java to be beta or experimental software.  It is not ready 

for public release. 

 

I am pleased with these results, but they are not as spectacular as I’d hoped.   This is 

because of an unforeseen consequence of using the Scheme-atomic model: individual 

Translation objects have very little idea of the state and layout of the Scheme program 

around them.   

 

What this means is that while “(+ 2 3)” does correctly translate, it does so in the most basic 

and verbose way possible.  A human being translating that command would change it to 

something like “int result = 2 + 3;” in Java, a far cry from the 3-line Scheme2Java translation 

in Figure 4.3.1.  Over the course of longer, more complex programs, the translation 

becomes more and more verbose.  There is an average increase of two and a half lines of 

code per line of Scheme code (this of course depends on how the Scheme code was 

formatted and what it is doing), which leads to the bloat of the resulting Java code.  A lot of 

this comes from functions.  In the Java code, translation for a simple function requires at 

least three lines of overhead: the function definition and open bracket, the return 

statement, and the closing bracket.  The Scheme code this is translated from has only two 

characters of overhead: the open and close brackets.  
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Some level of post-translation which could take these Java structures and 

compress them would be recommended future work.  In fact, at this level, it 

might be better to return meta-information on the translated Scheme code, 

rather than Java code itself.  This would allow easier organization of the code 

before the final output.  

 

There are a few restrictions on the Scheme code as a result of this atomic 

model.  The most critical one – which could be resolved with having the atoms 

know more of their context – is that Scheme functions must be defined in the 

order they are used.  If a function called “halve” calls a function called “is-

even”, “is-even” must be in the code before “halve”, otherwise the translation 

fails.  An alternate way to work around this problem would be to identify all the 

function calls in a pre-translate method and keep those in mind while 

translating.   

 

The translation of lambdas is decent, but not splendid.  The problem with the 

translation approach for lambdas is that once they are encountered in the 

Scheme code, they are translated to unchanging Java code, environment and 

all.  This allows the lambda to accurately represent the environment of the 

Scheme lambda at calling time, but should that state change, the lambda may 

return different results.  For instance, in the example 

“LambdaWithSetVariablesError” on the CD, the lambda uses its own internal 

environment (the one “frozen” when it was created) once a variable in its 

environment has its value changed by the set! command.  This was desired 

behavior, as it was how my Scheme execution model behaved. This however 

does differ from Dr. Scheme’s execution model, and this difference only became 

apparent late in the development process.  And unfortunately, the methods to 

make the two agree are not trivial.  I could re-write the Translation model so 

that in the translated Java source, variables are stored not as Scheme SVars 

but rather in some data structure, that lambdas (and indeed all other Scheme 

object types) access when necessary.  This would involve a pretty fundamental 
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rewrite.  However, it’s better than the alternative, wherein I pre-translate so 

that all calls to a pre-defined lambda have the code for the lambda copied in, in 

place of the call.  This would allow a separate lambda to be created for each 

call, solving this problem but introducing further ones, as well as greatly 

adding to the Java code bloat. Neither option has been implemented, so lambda 

translation must be considered incomplete or experimental.  However, it does 

work in the majority of cases where the outside environment doesn’t change 

between executions.
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Chapter 6 

 

Conclusions 
 

A summary of conclusions drawn from this project is presented and some 

suggestions towards future work are made in this chapter. 

 

6.1 Results Achieved 

 

Scheme to Java source translation is possible and practical: this program 

represents the first step in a source-to-source conversion.  While it is far from 

R5RS completeness, it does allow conversion of many basic and useful Scheme 

constructs, and can easily serve as a base for future work.  The program is a 

success, and outputs functionally-equivalent Java source code.  However, more 

concise code, something more akin to what a human developer would write, is 

desired.   

 

Relative to the other options in the field, I believe my program offers something 

of value.  Of course it is not as complete as Kawa, but it does offer valuable and 

clear source-to-source conversion: something Kawa doesn’t do.  Furthermore, 

while this is experimental software, it does have practical worth and can be 

used for real Scheme to Java conversions.  Its code is also designed for clarity 

and ease-in-understanding, an aid to future development by other 

programmers. 

 

This is the first source-to-source Scheme to Java translator ever, and I believe 

it is a good one. 
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6.2 Future Work 

 

6.2.1 A More Complete Command Set 

Obviously, adding more commands to the list of supported commands in 

Scheme2Java is some future work than can be done. I have been greedy and 

done most of the interesting (ie: commonly used and interesting-to-translate) 

commands, but there are still some good ones to do: case (this would be a pre-

transform into a Scheme if, like cond) cons, cdr, car (these would likely be 

transformed into special Java objects), let, etc.  The more supported commands 

from the R5RS set, the better. 

 

6.2.1 A More Intelligent Post-Translation 

As alluded to before, a post-translation method wherein the outputted Java 

code was compressed would be useful.  Such a method might even imply a 

redesign on the translation process, so that some other representation of the 

translated Java code would be returned instead of a string.  Originally, I had 

intended to return TranslatedScheme objects, which would contain enough 

information to generate the Java code, but would not be the actual Java code.  

This would allow code to be rearranged through easier methods than String 

manipulation.  However, I realized that a linked-list of Strings could provide the 

same functionality, and at the level of translation I’m doing, such rearranging 

isn’t typically necessary. 

 

Another option I considered was to return XML representations of the Java 

code, containing both the Java code and meta information about the Java code.  

This however was clearly a bad idea, as XML can be mapped one-to-one to an 

object: this would be XML for XML’s sake.  Besides, the above objections to an 

object still applied.  There are proprietary applications that generate Java code 

from XML, but this would be an unnecessary layer, as I can already generate 

the Java code myself. 
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The returns on programming a simplifying post-translate method might not be 

as big as one might expect, as there are already utilities (many available for 

free) that optimize compiled Java code5.  I didn’t test it, but I believe these 

programs might provide comparable optimization to what can be accomplished 

through a method in this program.  Of course there is no automated antidote 

or fix to bad code, but the output of Scheme2Java isn’t bad, just repetitive.  It 

should succumb to some basic optimizations. 

 

6.2.3 More Context for Translation Objects 

Another option for future work would be to change the atomic model so that 

atoms have a better idea of their place in the larger program.  This would result 

in better code and be an interesting programming task, as representing the 

context of a function in Scheme from Java’s perspective would be non-trivial.  

It would also allow the variable storage used for lambdas to be more robust 

than it is now.  Presently, identically-named variables at identically-deep levels 

in the Scheme code may not be recorded properly in a lambda accessing them. 

 

6.2.4 Translation to C++ and Other Languages 

Interesting future work would be to adapt the software to translate to C++ as 

well as Java.  This would not be too difficult, and it would result in nicer, 

operator-overloaded C++ output as opposed to the more limited output of the 

Java language.  Translator objects could either return code for both (allowing 

the user to choose), or, more interestingly, meta-information on the code to be 

generate, which could then be outputted via a output(lang) method, passing in 

either “C++” or “Java”, or any other supported language. 

 

 

 
5 One such list available here: http://www.geocities.com/marcoschmidt.geo/java-class-file-optimizers.html 
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6.2.5 Other Future Work 

Basic advances for further work also include a GUI – this is uninteresting to 

develop but could be handy.  The CLI provides all functionality that a GUI 

would.  Also, one feature that I would have liked to program would be a check 

to make sure that the Scheme input code contains no reserved Java words.  

For instance, a function called double in Scheme is illegal in Java, such names 

should be replaced by the translator before the translation begins.  Also, 

because of the way the translation proceeds, functions with the same name as 

variables can be translated incorrectly.  A simple transformation to make all 

names unique could be implemented. 

 

Additionally, lambda handling is not as great as it could be.  On their own they 

are handled fine, however, passing lambdas into functions isn’t identified 

properly.  Code like this fails: 

 
(define (a-plus-abs-b a b)  
    ((if (> b 0) + - ) a b))    
 

This is because + and – aren’t identified as lambdas and handled as such.  This 

is a more complex problem than it initially appeared to be, and I’m sorry I 

didn’t have more time to explore it more fully.  A student continuing work on 

this project would have their first goal defined as developing more robust 

handling of lambdas.  The present work-around is to not write Scheme code 

like that, but rather equivalent Scheme code: 

(define (a-plus-abs-b a b) 

  ((if (> b 0) 

(+ a b) 

(- a b) 

   ) 

 ) 
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Appendix A 

 

Competing Options for Scheme Translation 

 
There are several Scheme in Java projects available on the Internet, with 

various implementation strategies.  All are either implementations of the 

Scheme language or direct-bytecode converters; I could find no translators.  

Alphabetically: 

 

Jaja: Scheme in Java 

http://youpou.lip6.fr/queinnec/Java/Jaja.html 

Closed source, and no longer active: a Scheme interpreter in Java, done 

partially as an example of OO coding. 

 

Jscheme by Peter Norvig (previously "Silk") 

http://www.norvig.com/jscheme.html 

An open-source implementation of Scheme in Java, with some extensions.  

This takes Scheme source code and converts it to its own Java objects, which it 

then executes. 

 

Kawa, the Java-based Scheme system 

http://www.gnu.org/software/kawa/ 

The most advanced of the converters, and the only one that isn't an interpreter.  

Kawa does not convert Scheme into Java source; rather, it converts it onto its 

own internal Java "Expression" objects, which are then compiled to Java 

bytecode and executed. 

 

 

Scheme For Java 

http://student.nada.kth.se/~d93-hyo/scheme/ 
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Another open-source but inactive Scheme interpreter for Java. 

 

Skij 

http://alphaworks.ibm.com/tech/Skij 

Apparently abandoned (the last update was in March 1999), Skij is a corporate-

developed Scheme interpreter, written and running in Java. 

 

There are also several projects for which only broken links can be found as 

evidence of their existence. 
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Appendix B 

 

Annotated Conversions 
 
 

Rather than clutter the rationale and logic behind the conversions with 

typically-verbose examples, included here are actual inputs to and outputs of 

the Scheme2Java program, along with explanations. 

 

On the following pages you will find these examples of conversion: 

 

Conversion 1 - Shows a simple math conversion and define binding. 

Conversion 2 - Shows recursion down between functions, and how the 

required variable is passed along as deep as is needed. 

Conversion 3 - Shows how the Java code can become bloated, compared to the 

Scheme code. 

Conversion 4 - Shows the transformation of an if statement. 

Conversion 5 - Shows how lambda is translated. 

Conversion 6 - Shows how lambda is translated when the environment needs 

things stored. 

 

Included on the CD as Appendix D are the complete source and .class files for 

all these examples, among others.  In the source for all the Scheme examples, 

you will find brief comments explaining the purpose of the example and 

anything noteworthy in the output.  It is recommended that anyone interested 

in the operation of Scheme2Java explore these examples. 
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B.1 Conversion 1 
 

 

Rationale: 
Shows a simple math conversion and define binding. 
 
Input: 
(define (neg x) 
 (- x x x) 
) 
 
Output: 
//Generated Thu Apr 10 13:31:36 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B1 { 
 private SVar mathvar4(SVar x){ 
  SVar var6 = new SVar(x); 
  SVar var8 = new SVar(x); 
  SVar var10 = new SVar(x); 
  SVar var3 = new SVar(var6.toDouble() - var8.toDouble() –  

var10.toDouble() ); 
  return var3; 
 } 
 public SVar neg(SVar x){ 
  return mathvar4(x); 
 } 
 public void run(){ 
 } 
 public static void main(String[] args){ 
  B1 ts = new B1(); 
  ts.run(); 
 } 
} 
//EOF - B1 
 
Remarks: 
Notice that this program, when run, doesn’t do anything.  That’s because there 
is no code to execute in the Scheme input.  Had the line (neg 2) been added, 
the output Java code would instead have the run method: 

public void run(){ 
SVar var1 = new SVar(“2”); 
neg(var1); 

 } 
 
This can be seen in the other examples. 
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B.2 Conversion 2 
 

Rationale: 
Shows recursion down between functions, and how the required variable is 
passed along as deep as is needed. 
 
Input: 
(define (awesome x) 
 (+ 2 (- 3 (* 4 (/ 5 (* 100 241241241246 x))))) 
) 
(write (awesome 10)) 
 
Output: 
//Generated Thu Apr 10 13:33:29 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B2 { 
 private SVar mathvar20(SVar x){ 
  SVar var22 = new SVar("100"); 
  SVar var24 = new SVar("241241241246"); 
  SVar var26 = new SVar(x); 
  SVar var20 = new SVar(var22.toDouble() * var24.toDouble() *  

var26.toDouble() ); 
  return var20; 
 } 
 private SVar mathvar16(SVar x){ 
  SVar var18 = new SVar("5"); 
  SVar var16 = new SVar(var18.toDouble() / mathvar20(x).toDouble()  

); 
  return var16; 
 } 
 private SVar mathvar12(SVar x){ 
  SVar var14 = new SVar("4"); 
  SVar var12 = new SVar(var14.toDouble() * mathvar16(x).toDouble()  

); 
  return var12; 
 } 
 private SVar mathvar8(SVar x){ 
  SVar var10 = new SVar("3"); 
  SVar var8 = new SVar(var10.toDouble() - mathvar12(x).toDouble() ); 
  return var8; 
 } 
 private SVar mathvar4(SVar x){ 
  SVar var6 = new SVar("2"); 
  SVar var3 = new SVar(var6.toDouble() + mathvar8(x).toDouble() ); 
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  return var3; 
 } 
 public SVar awesome(SVar x){ 
  return mathvar4(x); 
 } 
 public void run(){ 
  SVar var32 = new SVar("10"); 
  SVar var30 = awesome(var32); 
  System.out.print(var30); 
 } 
 public static void main(String[] args){ 
  B2 ts = new B2(); 
  ts.run(); 
 } 
} 
//EOF - B2 
 
Remarks: 
The “x” variable is passed into the function “awesome’, even though it is not 
used in that function, but rather in a function called by a function used there.  
Unlike the previous example, when executed this Java code actually does 
something: print out the output of the function. 
 
Also note how there is one function per nesting-level of the Scheme code, and 
how the math conversion can handle any number of inputs: (+ n1, n2, n3, …, 
ni). 
 
Additionally, the translator recognizes that “awesome” is a reference to a 
previously-translated function. 
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B.3 Conversion 3 
 
Rationale: 
Shows how the Java code can become bloated, compared to the Scheme code. 
 
Input: 
(define (f a b) 
 (/(+ (modulo a 2) 5)  (* 9 (abs b))) 
) 
(write (f 10 20)) 
 
Output: 
//Generated Thu Apr 10 13:35:06 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B3 { 
 private SVar mathvar8(SVar a){ 
  SVar var10 = new SVar(a); 
  SVar var12 = new SVar("2"); 
  SVar var8 = new SVar(var10.toDouble() % var12.toDouble() ); 
  return var8; 
 } 
 private SVar mathvar6(SVar a){ 
   
  SVar var14 = new SVar("5"); 
  SVar var6 = new SVar(mathvar8(a).toDouble() + var14.toDouble() ); 
  return var6; 
 } 
 private SVar mathvar20(SVar b){ 
  SVar var22 = new SVar(b); 
  SVar var20 = new SVar(Math.abs(var22.toDouble()) ); 
  return var20; 
 } 
 private SVar mathvar16(SVar b){ 
  SVar var18 = new SVar("9"); 
  SVar var16 = new SVar(var18.toDouble() * mathvar20(b).toDouble()  

); 
  return var16; 
 } 
 private SVar mathvar4(SVar a, SVar b){ 
   
  SVar var3 = new SVar(mathvar6(a).toDouble() /  

mathvar16(b).toDouble() ); 
  return var3; 
 } 
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 public SVar f(SVar a , SVar b){   
  return mathvar4(a, b); 
 } 
 public void run(){ 
  SVar var28 = new SVar("10"); 
  SVar var30 = new SVar("20"); 
  SVar var26 = f(var28, var30); 
  System.out.print(var26); 
 } 
 public static void main(String[] args){ 
  B3 ts = new B3(); 
  ts.run(); 
 } 
} 
//EOF - B3 
 
Remarks: 
This is the bloat of Java that I was talking about.  3 lines of Scheme code 
become 46 lines of Java code: over 15 times the size.  Notice how the recursion 
works: the nested functions in Scheme become separate functions in Java, 
called when required.   Also, notice how here as well, “a” and “b” are passed 
along until needed, and “f” is recognized as a call to a previously-translated 
function. 
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B.4 Conversion 4 
 
Rationale: 
Shows the transformation of an if statement. 
 
Input: 
(define (largest x y) 
 ;returns largest of 2 numbers 
 (if ( >= x y ) 
  x 
  y 
 ) 
) 
(write (largest 10 20)) 
 
Output: 
//Generated Thu Apr 10 13:36:35 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B4 { 
 private SVar mathvar6(SVar x, SVar y){ 
  SVar var8 = new SVar(x); 
  SVar var10 = new SVar(y); 
  SVar var6 = new SVar(var8.toDouble() >= var10.toDouble() ); 
  return var6; 
 } 
 public SVar largest(SVar x , SVar y){ 
  SVar var14 = new SVar(y); 
  SVar var12 = new SVar(x); 
  SVar var3 = null; 
  if (mathvar6(x, y).toBoolean()){ 
   var3 = var12; 
  }else{ 
   var3 = var14; 
  } 
  return var3; 
 } 
 public void run(){ 
  SVar var20 = new SVar("10"); 
  SVar var22 = new SVar("20"); 
  SVar var18 = largest(var20, var22); 
  System.out.print(var18); 
 } 
 public static void main(String[] args){ 
  B4 ts = new B4(); 
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  ts.run(); 
 } 
} 
//EOF - B4 
 
Remarks: 
Notice how the if statement is actually the simplest code: all the difficult work 
is done by the other translators, recursively. 
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B.5 Conversion 5 
 

Rationale: 
Shows how lambda is translated. 
 
Input: 
(define tdouble (lambda (a) (+ a a))) 
(tdouble 4) 
 
Output: 
//Generated Thu Apr 10 13:38:31 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B5 { 
 private SVar mathvar6(SVar a){ 
  SVar var8 = new SVar(a); 
  SVar var10 = new SVar(a); 
  SVar var5 = new SVar(var8.toDouble() + var10.toDouble() ); 
  return var5; 
 } 
 private class lambdavar5{ 
  private SVar execute(SVar a){ 
   return mathvar6(a); 
  } 
 } 
 public void run(){ 
  lambdavar5 tdouble =  new lambdavar5(); 
  SVar var14 = new SVar("4"); 
  SVar var12 = tdouble.execute(var14); 
 } 
 public static void main(String[] args){ 
  B5 ts = new B5(); 
  ts.run(); 
 } 
} 
//EOF - B5 
 
Remarks: 
lambdavar5 is a separate class, with its environment stored.  Here there is 
nothing necessary to store, so all that is required is the execute() method.  
When the lambda translator returns, it returns information indicating both 
that it does represent a lamda, and that this lambda requires so many 
variables in order to execute. 
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B.6 Conversion 6 
 

Rationale: 
Shows how lambda is translated when the environment is stored.  Also 
highlights the method in which the environment is stored. 
 
Input: 
(define global 0) 
(set! global 10) 
(define add_to_global (lambda (a) (+ a global))) 
(write (add_to_global 4)) 
 
Output: 
//Generated Thu Apr 10 13:44:47 EDT 2003; 
import java.io.*; 
import java.util.*; 
public class B6 { 
 private SVar mathvar14(SVar a, SVar global){ 
  SVar var16 = new SVar(a); 
  SVar var18 = new SVar(global); 
  SVar var13 = new SVar(var16.toDouble() + var18.toDouble() ); 
  return var13; 
 } 
 private class lambdavar13{ 
  private SVar execute(SVar a){ 
   return mathvar14(a, global); 
  } 
  SVar var7 = new SVar(10); 
  SVar var3 = new SVar(0); 
  SVar global = new SVar(var7); 
 } 
 public void run(){ 
  SVar var3 = new SVar("0"); 
  SVar global = var3; 
  SVar var7 = new SVar("10"); 
  global  = new SVar(var7); 
  lambdavar13 add_to_global =  new lambdavar13(); 
  SVar var24 = new SVar("4"); 
  SVar var22 = add_to_global.execute(var24); 
  System.out.print(var22); 
 } 
 public static void main(String[] args){ 
  B6 ts = new B6(); 
  ts.run(); 
 } 
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} 
//EOF - B6 
 

Remarks: 
Notice how lambdavar13 now has both an execute method and a list of 
variables in the environment.  Not all are used.  In the example, we first defined 
global to be 0, then used set! to redefine it to 10.  The variables in lambdavar13 
reflect this, having both a variable for 0 and 10.  Notice however that only the 
most recent value, 10, is bound to the variable “global”.   
 
All variables when created get added to the environment, and the side-effect of 
the atomic model is that many temporary variables (var7, var3) get added that 
may not be used when the lambda is executed. 
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Appendix C 

 

Instructions for Running the Software 
 

 
Scheme2Java is run from the command line, via the Scheme2JavaCLI: 
 
To run, switch to the directory containing the Scheme2Java binaries.  Run 
Scheme2Java as follows: 
 
java Scheme2JavaCLI [input file] [classname] [logging level] [javac path] 
 
where 
 [input file] is the Scheme code you would like translated 
 [classname] is the name of the output class you’d like.  This can be any 

one-word string, and should be Java-valid, otherwise the source won’t 
compile.  The output will be stored in a file called [classname].java  
If the file exists, it will be overwritten without warning. 
[logging level] is the amount of logging you’d like printed to the screen.  
This is a number from 3 to 1. 

At level 3 everything is printed out, including debug information. 
At level 2 everything important is printed out, enough so that you 
can follow the translation process by hand. 
At level 1 only the identification of the commands, and the final 
output, is printed. 

[javac path] is the path to the Javac compiler.  Providing a path here 
indicates that you’d like the output source to be compiled after 
translated.  This parameter is optional. 

 

Compiled output can be run by invoking “java [classname]”. 
 

Also included is a helper batch file, called go.bat.  go.bat allows you to specify only the 

classname you want – it then translates, compiles, and runs.  This lets you see output 

immediately. 

 

To use go.bat, first edit it so that it points to your installation of javac.exe.  The default 

location for this file is c:\j2sdk1.4.1_01\bin\, and that’s where it looks unless edited 

otherwise. 

 

Then, invoke go.bat as follows: 

 

go [classname] 

 

Your Scheme code will be translated, compiled, and will be run. 
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Note that to compile and run the Java-translationed code, you need to have SVar.class in the 

same directory or in java’s classpath. 

 


